Size and Composition Dependence of Oxygen Reduction Reaction Catalytic Activities of Mo-Doped PtNi/C Octahedral Nanocrystals

Shlomi Polani,* Katherine E. MacArthur, Malte Klingenhof, Xingli Wang, Paul Paciok, Lujin Pan, Quanchen Feng, Attila Kormányos, Serhiy Cherevko, Marc Heggen,* and Peter Strasser*

ABSTRACT: A variety of synthesis protocols for octahedral PtNi nanocatalysts have led to remarkable improvements in platinum mass and specific activities for the oxygen reduction reaction. Nevertheless, the values achieved are still only one tenth of the activity measured from Pt₃Ni single-crystal (111) surfaces. These particles lose activity during potential cycling, primarily because of Ni leaching and subsequent loss of shape. Here, we present the syntheses and high catalytic oxygen reduction reaction activities of molybdenum-doped PtNi octahedral catalysts with different sizes (6−14 nm) and compositions. We show that the Mo-doped, Ni-rich, PtNi octahedral catalysts exhibit enhanced stability over their undoped counterpart. Scanning transmission electron microscopy with energy-dispersive X-ray analysis reveals the particular elemental distribution for the size and composition of the different catalysts. By combining high-resolution compositional analysis with electrochemical measurements and online inductively coupled plasma mass spectrometry, it was possible to correlate the size, morphology, and composition with the oxygen reduction reaction activities before and after accelerated stress tests. The octahedral catalysts show high electrochemical surface areas and increasing specific activity with increasing surface area of the (111) facets and Ni content, leading to high mass activities. These results demonstrate the advantages of increasing the (111) surface area and Ni content of PtNi nano-octahedral catalysts to improve the performance and stability for the oxygen reduction reaction.

KEYWORDS: PtNiMo octahedra, synthesis, oxygen reduction, metal dissolution, stability

P ron exchange membrane fuel cells (PEMFCs), considered a clean power source for stationary and mobile devices, have been a focal point for researchers in the last decades. The primary technical challenges for automotive applications are durability and cost. The latter relates to the sluggish oxygen reduction reaction (ORR) rate at the cathode, which necessitates the deployment of high Pt mass loadings. The ORR is a structure-sensitive process, that is, its rate depends on the crystallographic orientation of the Pt surface. The ORR activity increases in the order of (100) < (110) = (111).1 Studies conducted on Pt-based bimetallic catalysts showed volcano-type catalytic ORR rates, where the alloying of Pt with certain 3d-transition metals or lanthanides boosted the ORR activity.2−5 Structurally, the formation of a surface lattice-strained Pt-skin upon thermal annealing or, alternatively, the formation of a surface lattice-strained Pt-shell structure upon selective 3d metal leaching were both held responsible for the high experimental ORR activity. This was because these strained surfaces featured downshifted d-band centers relative to pure Pt, weakening chemisorption of reactive intermediates. In the wake of this insight, the “materials-by-design” strategy, which focuses on the transfer of single-crystal knowledge to nanoscale materials, led to heightened interest in small, 4−9 nm edge length, Pt-rich, shape-controlled, octahedral (oh-) PtNi nanoparticles (NPs) enclosed with facets. While these nanocatalysts showed increases in their specific ORR activities over Pt and spherical PtNi NPs,7,8 they suffered from structural instability and compositional inhomogeneity, which is why they fell short of the intrinsic ORR activity of the experimental ORR activity of Pt₃Ni (111) single crystal.7

There is consensus that larger and compositionally uniform PtNi octahedral catalysts are needed to overcome the cost and degradation issues.9−15 The most widely applied synthetic protocols for oh-PtNi NPs involve the reduction of Pt(acac)₂ and Ni(acac)₂ using dimethylformamide (DMF) as the solvent and reducing agent. The synthesis has been typically carried out in a sealed vessel (autoclaves, pressure flasks or vials), and the reaction temperature has been generally above the boiling
points of both the DMF (153 °C) and the acetylacetonate ligand (140 °C). The low Ni-content of the resulting NP catalysts (to a large degree Pt₃Ni octahedra), combined with the weak reductive power of DMF raised doubts about the rate of reduction of Ni(acac)₂ from Ni²⁺ to Ni⁰ under these conditions. Alternatively, Pt-rich oh-PtNi NPs have been synthesized at temperatures above 200 °C using oleylamine and oleic acid as solvents and capping agents and with or without tungsten hexacarbonyl as the reducing and shape-directing agent. Wu et al. proposed the use of benzyl alcohol (BA) as both solvent and reducing agent to produce larger bimetallic oh-PtNi NP catalysts (11.8 ± 1.2 nm apex to opposite apex). However, these oh-PtNi NP catalysts were never studied for their oxygen electroreduction performance. The structural degradation of compositionally inhomogeneous DMF-derived bimetallic oh-PtNi NPs series was tracked by monitoring their catalytic activities in conjunction with their compositional and structural evolutions. The Ni-rich facet centers showed preferred leaching, resulting in a concave curvature or hexapod skeleton in which the catalytically active (111) facets were lost, resulting in decreased ORR activity.

Doping strategies for oh-PtNi NPs with a third metal like Mo, Rh, or Ga were proposed to improve ORR reactivity, facet stability, and long-term durability. Mo doping of oh-Pt₃Ni catalysts (two-step synthesis, 48 h) was reported with high, yet never reproduced, ORR specific (SA) and mass (MA) activities (10.3 mA cm⁻² and 6.98 A mg⁻¹ @0.9 V_RHE, respectively). Cao and Mueller presented computations suggesting that surface Mo oxides on the Mo-doped oh-Pt₃Ni/C NPs caused stabilization, while subsurface Ni stabilized under-coordinated Pt sites. Subsequently, Jia et al. demonstrated that the oh-Pt₃Ni (111)-like near-surface structure and hence the octahedral shape is stabilized by the doping thanks to a retention of subsurface Ni atoms in acidic media. Dionigi et al. later demonstrated and confirmed the high durability of Mo-doped PtNi/C octahedral catalyst. The Mo-doped Pt₃Ni/C octahedral catalyst (5.8 ± 1.5 nm) showed high ORR activity (3.43 ± 0.35 A mg⁻¹ @0.9 V_RHE) on the RDE level, and they were further implemented in MEA-based single fuel cell tests where they demonstrated sustained Pt MA of 0.45 A mg⁻¹ at 0.9 V_cell.
Beermann et al. explored surface Rh-doped PtNi octahedral catalysts with well-defined shape and composition. The Rh-doped PtNi electrocatalyst showed a unique improved activity and stability compared to the undoped PtNi octahedral catalyst. After 30k cycles between 0.05−1.0 V_RHE, the activity was substantially enhanced, and the octahedral shape was almost unaffected. The enhanced durability was attributed to the suppression of surface Pt migration rather than Ni dissolution.

The SA strongly depends on the fraction of exposed (111) surface and is about an order of magnitude lower for PtNi nano-octahedral catalysts than that of bulk single-crystal PtNi (111) surfaces. High turnover frequencies (∼2800 s⁻¹) were reported for PtNi(111) surfaces, which, if translated to the NPs scale, correlates to 30 nm diameter octahedral catalysts. Moreover, the durability of Pt-based catalysts is strongly enhanced in relatively large particles such as nanostructured Pt films and large PtM NPs because of the low Pt dissolution during voltage cycling, suggesting that large (>30 nm edge length) octahedral particles with higher surface coordination could improve activity and durability. Generally, large (>10 nm, edge length), Ni-rich PtNi octahedral catalysts are not considered as favorable catalysts for the ORR, possibly because of the constraints of synthesis conditions or because of the low stability expected due to Ni leaching during potential cycling, from relatively small, undoped and Ni-rich catalysts, or their combination.

Here, we investigate the relationships between synthesis, particle size, composition, and catalytic ORR reactivity of ternary oh-Mo-doped PtNi/C electrocatalysts. Unlike previous studies, we focus on new synthetic control strategies to achieve NPs with larger edge lengths (≤14 nm) and with higher Ni-content and demonstrate their favorable size−activity relationships. We uncover a robust yet tunable one-pot synthesis to produce oh-PtNi(Mo)/C nanocrystals with well-defined shape and exposed facets. We show how size and composition are interlinked and affect the ORR activity and discuss the (111) facets size-dependent Ni segregation and dissolution during accelerated stress tests (ASTs) of the different oh-PtNi(Mo)/C nanocrystals.

RESULTS AND DISCUSSION

Synthesis and Morphology.

We prepared Ni-rich binary oh-PtNi NPs (Figure S1) and ternary oh- Mo-doped PtNi...
nanocrystals (henceforth referred to as PtNi-6 and PtNi(Mo), respectively) using BA as both the solvent and the reducing agent, and subsequently, we impregnated them on a high surface area carbon support (see SI).

What sets the present synthesis pathway apart from previously documented one is the one-step, one-pot nature of the Mo-doped octahedra syntheses. As a result of this, the resulting elemental distribution of Mo is through the bulk of the nano-octahedra, in contrast to surface-doping, which was reported for the two-step synthesis for Mo-doped octahedra. The final carbon supported catalysts are referred to as PtNi(Mo)/C. The PtNi(Mo) active phase of the catalysts is henceforth labeled as PtNi(Mo)-L, where L signifies the mean particle edge length in nm. Low-resolution transmission electron microscopy (TEM) images and particle size analysis demonstrate the uniformity of the PtNi(Mo)/C octahedral series shape and their homogeneous distributions on the high-surface-area carbon support (Figure 1). The corresponding narrow particle size distribution (PSD) is presented in the insets. The PtNi(Mo)/C octahedral NPs exhibit different compositions and slightly different Pt wt %, which were determined using inductively couple plasma optical emission spectroscopy (ICP-OES) and summarized in Table S1 in the SI. Two experimental parameters were found to control particle composition and size: The Ni precursor amount and its supersaturated concentration. Tuning the amount of Ni precursor was a simple way to achieve control over composition and size. The NPs with 7.3, 10.4, and 12.4 nm NPs edge length (referred to as PtNi(Mo)-7, -10, and -12) shown in Figure 1a–c were prepared by employing 50, 100, and 200 mg of Ni(acac)2, respectively, under otherwise constant conditions.

To rationalize the relationship between employed Ni precursor mass, resulting Ni atomic ratio, and NPs size, we hypothesize that when the reaction starts, Pt and Ni possess precursor mass, resulting Ni atomic ratio, and NPs size, we hypothesize that when the reaction starts, Pt and Ni possess significantly different reduction kinetics. Pt as the more noble metal initially reduces faster and nucleates to Pt-rich seeds using the reducing power of BA. The seed formation is likely enhanced by enthalpic and entropic contributions of alloying. The Ni reduction kinetics is much slower at this stage. Ni may play the role of masking Pt precursors and in doing so helps to reduce the probability of successful collisions, which moderates the reduction kinetics of Pt41 to Pt50 somewhat and, as a result of this, leads to bigger particles. This implies that the NPs growth starts after Pt nucleation, and Pt subsequently catalyzes the reduction of Ni41 to Ni50 (“noble-metal-induced reduction”).

The degree of precursor saturation is also a controlling synthesis parameter for the resulting particle size. Reducing the supersaturated precursor concentration by controlling synthesis parameter for the resulting particle size. For PtNi(Mo)-12, the ADF-STEM, EDX and line profile close to the (100) zone-axis in Figure S3 demonstrate the Pt frame clearly. The existence of Pt-rich edges alongside the hexapod structure, which together resembles a closed 3D Pt frame. This morphological feature was more pronounced for the PtNi(Mo)-14, presumably owing to its increased size. In contrast to PtNi(Mo)-7, their Ni atoms were invariably preferentially segregated to the (111) facets. The elemental distribution is, therefore, strongly dependent on particle size. For PtNi(Mo)-12, the ADF-STEM, EDX and line scan close to the (100) zone-axis in Figure S3 demonstrate the Pt frame clearly. The existence of Pt-rich phase alongside a Ni-rich phase accounts for the asymmetry of the (111) reflection in the XRD patterns. The elemental maps of PtNi(Mo)-14 agree with the theoretically predicted and studied structure, of a so-called “Pt hexapod and edges”, which was postulated using previously simulated EDX maps, (see structure 4 therein).

Because of the low doping levels of Mo in the present particles, the detection and physical location of the Mo atoms is right on the limit of EDX analysis. To address this challenge, principal component analysis (PCA) was used to apply denoising to the data sets. First, the data was rebinned such that sufficient signal-to-noise per pixel was present. Then following decomposition, four components were recombined to produce a reconstructed data set. To extract counts, a model fitting was applied and the resulting elemental maps of PtNi(Mo)-14 are shown in Figure S4. Here, the Mo signal was multiplied by a factor of 100 in order to be visible on the same intensity scale as the other elements, where it correlates with the Ni signal. Figure S4 shows a plot of the sum spectrum for this data set, as well as a magnified version highlighting that Mo has been detected above the level of noise, over the whole field of view.

Surface Voltammetry and ORR Catalysis. To establish relationships between size, composition, and electrocatalytic reactivity, we tested the prepared oh-NPs catalysts using cyclic and linear scan voltammetry. Figure S5 shows the cyclic voltammetry (CV) (0.05–1 V RHE) and CO-stripping voltammetry (linear scan 0.05 to 1 V RHE) of the PtNi(Mo)/C series before and after electrochemical ASTs. The CVs of the catalysts displayed distinctly different characteristics. For PtNi(Mo)-7, the voltammetric H_{upd} region (0.05–0.3 V RHE) was smooth and lacked the Pt(100) and Pt(110) H_{upd} peak signatures. In contrast, for PtNi(Mo)-12 and PtNi(Mo)-14 (Figure S5b,c), the (100) signature was quite visible around
+0.3 V_{BHE} and became even more evident after the ASTs. Also, both PtNi(Mo)-12 and PtNi(Mo)-14 displayed the characteristic Mo(IV)/Mo(VI) voltammetric wave inside the double-layer region (0.3–0.6 V_{BHE}), whereas PtNi(Mo)-7 missed that

Figure 3. (a) ECSA_{Hupd} (blue) and ECSA_{CO} (red) before (solid) and after (dashed) ASTs. (b) Mass (blue) and specific (red, CO-based) activities before (solid) and after (dashed) ASTs (evaluated at 0.9 V_{BHE}); the percentage of activity retention after ASTs are shown above the columns.

Figure 4. HAADF-STEM micrographs, STEM-EDX elemental mapping for Pt (red) and Ni (green), their overlay, after ASTs, CV in nitrogen-saturated atmosphere and LSV in oxidative atmosphere for (a) PtNi-6, (b) PtNi(Mo)-7, and (c) PtNi(Mo)-14 (the scale bars correspond to 2 nm).
feature.36 Again, after ASTs, these Mo peaks became more pronounced.33 Linear sweep voltammetry (LSVs) in O\textsubscript{2}-saturated electrolyte before and after the ASTs are presented in Figure S6. The LSVs display the characteristic regimes of kinetic, mixed, and mass transport control. The insets show the magnification of potentials around 0.9 V\textsubscript{RHE}. In order to investigate morphology after the ASTs, the catalysts were collected from the working electrode and were subsequently deposited on a TEM grid (Figure S6 right column). Inspection revealed that the morphology of PtNi(Mo)-7 changed only slightly, with the LSVs before and after the AST showing only a minor decrease in catalytic reactivity at 0.9 V\textsubscript{RHE}. By contrast, the principal emergence of concave-shaped octahedral NPs was observed for the PtNi(Mo)-12 and PtNi(Mo)-14 catalysts (Figure S6b,c, right column). The concavity of PtNi(Mo)-14 was more defined than that of PtNi(Mo)-12. Table S2 presents the corresponding electrochemical data collected for the different catalysts obtained in this paper.

Figure 3a presents the electrochemical surface areas (ECSAs), derived from CO and Hupd charges, while Figure 3b reports the corresponding specific (CO-based) and Pt mass-based electrocatalytic ORR activities. In general, the Ni-rich catalysts displayed the highest ECSA\textsubscript{CO}. Out of the doped catalysts, the Pt-rich (PtNi(Mo)-7) possesses the lowest ECSA\textsubscript{Hupd}. Interestingly, a significant discrepancy between ECSA\textsubscript{CO} and ECSA\textsubscript{Hupd} was evident only for the smallest, bimetallic oh-PtNi-6 reference catalyst, with the ECSA\textsubscript{CO} almost twice the ECSA\textsubscript{Hupd}: This is an indication of the presence of Ni atoms in surface or subsurface regions.44 PtNi(Mo)-12 and the PtNi-6 octahedra showed the two highest ECSA\textsubscript{CO} of 61.7 and 65.9 m2g-1, respectively, comparable to the Pt/C reference catalyst (67.7 m2g-1). This is an exceptionally high value for an oh-shaped Pt alloy nanoparticle catalyst,18,28,29 and is potentially of much significance for the design of sufficiently rough, high-performing PEM fuel cell cathodes. More specifically, ECSA\textsubscript{CO} values of >50 m2g-1 at particle sizes of >10 nm were claimed to be required to enable cathode layers with sufficient "Pt roughness factor" needed for high power performance.45 The XRD pattern of PtNi(Mo)-12 showed a reflection around 2θ angles, which could be associated with a NiO (220) peak (Figure S2). To rule out a contribution from a two-electron pathway or parasitic reactions from NiO, we performed LSVs at different catalysts. The comparison of the shape loss of the Ni-rich catalysts PtNi-6 with PtNi(Mo)-12 and PtNi(Mo)-14 shows the advantages of Mo doping on the stability of the catalysts.29 The high residual activity for the concave octahedra is expected because of enhanced local composition and structural disorder.50 The catalysts not only withstood the conditions of AST but also experienced oxidative atmospheres occurring on the facets of the particles during ASTs, activity measurements under oxidative atmosphere and CV under N\textsubscript{2}-saturated atmosphere. Table S2 shows a quantitative EDX elemental mapping and quantitative analysis prior to and after AST measurements that induced Ni dissolution.16,44 Furthermore, the strong interaction between CO\textsubscript{ad} and surface Pt sites could alter the surface morphology and composition during CO-stripping measurements.71

Online SFC-ICP- MS and IL-STEM. To get molecular insight in the relationships between the electrochemical test conditions and the resulting compositional transformations under AST conditions (inert atmosphere), the dissolution profiles of the different-shaped catalysts were investigated using online ICP-MS measurements and correlated with the morphology degradation based on the identical location STEM (IL-STEM). IL-STEM allowed us to follow the morphology evolution of one and the same octahedron under the AST conditions. Panels a and b of Figure 5 show HAADF micrographs of PtNi(Mo)-12 before and after AST, demonstrating the transformation of facets from flat to concave. EDX elemental mapping and quantitative analysis prior to and after AST showed an atomic ratio (Pt:Ni) of 0.25:1 and 1.5:1, respectively, confirming Ni leaching during AST measurements (Figure 5c,d).

Figures S11–14 show the dissolution profiles for Pt, Ni, Mo recorded for PtNi-6, PtNi(Mo)-7, PtNi(Mo)-12, and PtNi(Mo)-14, respectively. In general, for all traced metals, the most significant dissolution occurred when the SFC contacted...
The dissolution of all three metals started above 1 VRHE (1.07, 1.00, and 1.15 VRHE for Pt, Ni, and Mo, respectively), and the results. In contrast, the dissolution of Ni and Mo could be observed for Pt, one in the anodic scan and one in the cathodic scan, which is consistent with previous literature. Two distinct dissolution features were observed for PtNi(Mo)-12, (e) online ICP-MS dissolution measurements during ASTs for the different catalysts.

The amount of dissolved Pt was approximately 2 orders of magnitude smaller than the values calculated for Ni; the highest values were obtained for the PtNi-6 sample. The Ni dissolution scaled with the Pt:Ni ratio in the alloys and was less pronounced for the PtNi(Mo)-7 sample containing 25 at% Ni, showing a barely visible dissolution peak during the last CV in the wide potential window. Since the Mo content is low (below 2 at% for all samples), the Mo dissolution remained low in all cases. Finally, based on the dissolved amounts, post-AST compositions of all samples were calculated (Table S2). Similar conclusions can be made as in the case of the quantitative EDX analysis, that is, the Pt:Ni ratio increased in all samples. Although the compositions calculated from the ICP-MS data matched well with the ones derived from the EDX data for the PtNi(Mo)-7 sample, a notable difference can be observed for PtNi-6, PtNi(Mo)-12 and PtNi(Mo)-14 Ni-rich samples.

Based on the ICP-MS data, the increase in the Pt:Ni ratio is much smaller than that based on the EDX measurements (Pt36.2Ni62.6Mo1.15 vs Pt 76.9Ni23.1 and Pt28.7Ni69.6Mo1.67 vs Pt79.4Ni30.6 for PtNi(Mo)-12 and PtNi(Mo)-14, respectively). This discrepancy was observed for the Ni-rich catalysts only, however, and not for the Pt-rich catalyst (PtNi(Mo)-7), the initial composition of which was stable during AST conditions and during the different applied electrochemical measurements. The reason for the drastic compositional discrepancy is attributed to Ni-leaching during the electrochemical measurements performed additionally to the ASTs.

![Figure 5. IL-HAADF micrograph of (a) before, (b) after AST and IL-STEM-EDX of (c) before, (d) after AST for PtNi(Mo)-12.](https://pubs.acs.org/doi/10.1021/acscatal.1c01761) (c) before, (d) after AST for PtNi(Mo)-12. (e) Online ICP-MS dissolution measurements during ASTs for the different catalysts.

CONCLUSIONS

The present work highlights the need for new synthetic approaches to prepare large Ni-rich octahedral catalysts. Increasing the Ni precursor and the solvent volume independently led to an increase in the size of the octahedra, indicating a correlation between size and composition. The addition of Mo in a single-step colloidal synthesis of Ni-rich octahedral PtNi nanocatalysts promotes the shape stability during potential cycling. This was confirmed by post-mortem STEM-EDX analysis. The SA observed in addition to the size increase appears to originate from the relatively highly extended (111) facets. IL-STEM combined with online ICP-MS showed that only a minor Ni dissolution was evident under the AST conditions. The Ni-rich Mo-doped nanocrystals do not retain their initial activities, but the residual activity is much higher compared with the initial activity of the undoped Ni-rich PtNi octahedral catalyst. The ability to control size and composition in PtNi(Mo)-octahedral catalysts allowed us to observe the increase in ORR performance along with the increase in (111) facets and Ni content and suggests the development of ≥30 nm PtNi(Mo)/C electrocatalysts to maximize ECSA and specific activity. Nevertheless, out of the scope of this paper, when a Ni-rich catalyst is applied to an
MEA, Ni leaching due to the electrochemical activation may cause contamination of the fuel cell membrane. Post-treatments not only produce durable and compositionally stable catalysts but also boost the activity as well.

ASSOCIATED CONTENT

- **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.1c01761.

Experimental details are provided, TEM images, STEM-EDS, XRD, CV curves, ORR polarization curves, CO-stripping of the catalysts and dissolution profiles (PDF).

AUTHOR INFORMATION

Corresponding Authors

- **Peter Strasser** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany; orcid.org/0000-0002-3884-436X; Email: p.strasser@tu-berlin.de
- **Marc Heggen** – Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Email: m.heggen@fz-juelich.de
- **Shlomi Polani** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany; orcid.org/0000-0001-5961-0661; Email: polani@tu-berlin.de

Supporting Information

AUTHOR INFORMATION

Corresponding Authors

- **Peter Strasser** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany; orcid.org/0000-0002-3884-436X; Email: p.strasser@tu-berlin.de
- **Marc Heggen** – Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Email: m.heggen@fz-juelich.de
- **Shlomi Polani** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany; orcid.org/0000-0001-5961-0661; Email: polani@tu-berlin.de

Authors

- **Katherine E. MacArthur** – Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; orcid.org/0000-0002-5024-2054
- **Malte Klingenhof** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
- **Xingli Wang** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
- **Paul Paciok** – Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- **Lujin Pan** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
- **Quanchen Feng** – Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
- **Attila Kormányos** – Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany; orcid.org/0000-0002-2145-7419
- **Serhiy Cherevko** – Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany; orcid.org/0000-0002-7188-4857

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.1c01761

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

The authors are grateful for the financial support by the Deutsche Forschungsgemeinschaft (DFG) under the grant numbers HE 7192/1-2 and STR 596/5-2.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Victor Shokhen for his support in producing graphical models for the different catalysts.

REFERENCES

19. Wang, J.; Li, B.; Gao, X.; Yang, D.; Lv, H.; Xiao, Q.; Ker, S. K.; Zhang, C. From rotating disk electrode to single cell: Exploration of PtNi/C octahedral nanocrystal as practical proton exchange...

