Accepted Manuscript

Carbon as Catalyst and Support for Electrochemical Energy Conversion

Panagiotis Trogadas, Thomas F. Fuller, Peter Strasser

PII: S0008-6223(14)00324-8
DOI: http://dx.doi.org/10.1016/j.carbon.2014.04.005
Reference: CARBON 8891

To appear in: Carbon

Received Date: 29 November 2013
Accepted Date: 1 April 2014

Please cite this article as: Trogadas, P., Fuller, T.F., Strasser, P., Carbon as Catalyst and Support for Electrochemical Energy Conversion, Carbon (2014), doi: http://dx.doi.org/10.1016/j.carbon.2014.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Carbon as Catalyst and Support for Electrochemical Energy Conversion

Panagiotis Trogadas⁹*, Thomas F. Fullerᵇ and Peter Strasserᵃ*

ᵃ The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin, Germany 10623
b School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
* Corresponding author: pstrasser@tu-berlin.de

Carbon has unique characteristics that make it an ideal material for use in a wide variety of electrochemical applications ranging from metal refining to electrocatalysis and fuel cells. In polymer electrolyte fuel cells (PEFCs), carbon is used as a gas diffusion layer, electrocatalyst support and oxygen reduction reaction (ORR) electrocatalyst. When used as electrocatalyst support, amorphous carbonaceous materials suffer from enhanced oxidation rates at high potentials over time. This drawback has prompted an extensive effort to improve the properties of amorphous carbon and to identify alternate carbon-based materials to replace carbon blacks. Alternate support materials are classified in carbon nanotubes and fibers, mesoporous carbon, multi-layer graphene (undoped and doped with metal nanoparticles) and reduced graphene oxide. A comparative review of all these supports is provided. Work on catalytically active carbon hybrids is focused on the development of non-precious metal electrocatalysts that will significantly reduce the cost without sacrificing catalytic activity. Of the newer electrocatalysts, nitrogen/metal-functionalized carbons and composites are emerging as possible contenders for commercial PEFCs. Nitrogen-doped carbon hybrids with transition metals and their polymer composites exhibit high ORR activity and selectivity and these catalytic properties are presented in detail in this review.
Table of Contents
1. Introduction ... 3
2. Carbon as Electrode and Electrocatalyst ... 3
 2.1 Structure and Properties ... 3
 2.1.1 Carbon Black ... 3
 2.1.2 Diamond ... 6
 2.1.3 Fullerenes .. 7
 2.1.4 Mesoporous Carbon (MC) .. 8
 2.1.5 Carbon Nanotubes (CNTs) ... 9
 2.1.6 Carbon Nanofibers (CNFs) ... 10
 2.2 Electrochemical Properties ... 11
 2.2.1 Intercalation Reactions .. 12
 2.2.2 Surface Reactions ... 13
 2.3 Applications ... 19
 2.3.1 Batteries and Capacitors .. 20
 2.3.2 Biosensors .. 21
 2.3.3 Photo-electrochemical Water Splitting ... 23
 2.3.4 Electrolytic Synthesis of Hydrogen Peroxide (H₂O₂) 24
3. Carbon, Carbon Hybrids and Carbon Composites in PEFCs 28
 3.1 Carbon as Structural Component in PEFCs ... 28
 3.2 Carbon as PEFC Catalyst Support .. 29
 3.2.1 Carbon Nanotubes (CNTs) and Fibers (CNFs) .. 32
 3.2.2 Mesoporous carbon (MC) ... 38
 3.2.3 Multi-layer Graphene and reduced Graphene Oxide doped with Metals / Metal
 Oxides .. 43
 3.2.4 Interaction between the Carbon Support and the Catalyst 46
4. Carbon Hybrids and Composites as ORR Electrocatalysts in Proton Exchange
 Membrane Fuel Cells .. 49
 4.1 Nitrogen-doped Carbon ... 49
 4.2 Nitrogen-doped Carbon Hybrids with Non-Precious Metals 53
 4.3 Polymer Composites with Nitrogen-doped Carbon Hybrids 57
5. Carbon Hybrids as ORR Electrocatalysts in Alkaline Fuel Cells 61
 5.1 Nitrogen-doped Carbon ... 61
 5.2 Nitrogen-doped multi-layer Graphene / reduced Graphene Oxide 64
 5.3 Carbon with Non-Precious Metals ... 66
6. Conclusions and Future Outlook .. 71
7. Commentary ... 72
Nomenclature .. 74
References .. 75
1. Introduction

Carbon is distinct among chemical elements since it is found in dramatically different forms and with varying micro-textures. The diverse morphologies of carbon make it an attractive material that is widely used in a large range of electrochemical applications. Carbon exists in various allotropic forms due to its valency [1], with the most well-known being carbon black, diamond, fullerenes, graphene, and carbon nanotubes. This review is divided into five sections. In the first two sections the structure, electronic and electrochemical properties of carbon are presented along with their applications. The last three sections deal with the use of carbon in proton exchange and alkaline membrane fuel cells (PEFCs), as catalyst support and oxygen reduction reaction (ORR) electrocatalyst.

2. Carbon as Electrode and Electrocatalyst

2.1 Structure and Properties

2.1.1 Carbon Black

Carbon black is usually produced by the “furnace black” process, namely the partial combustion of petrochemical or coal tar oils [2]. Due to the nature of the source materials, heat treatment is used (250-500°C) to remove impurities from the formed carbon [3-5]. Carbon black consists of spherical particles (diameter less than 50 nm) that may aggregate and form agglomerates (~ 250 nm diameter) [6]. The carbonaceous particles have para-crystallite structures [6] consisting of parallel graphitic layers with 0.35-0.38 nm interplanar spacing. The crystalline graphitic portion of carbon black has sp² hybridization involving a triangle in-plane formation of sp² orbitals while the fourth
p_z orbital lies normal to this plane forming weaker delocalized π bonds with other neighboring carbon atoms [7-9]. Chemical (ZnCl_2 / H_3PO_4 addition to carbon precursor) or gas (steam / CO_2) treatment of carbon black at high temperatures (800-1100°C) and high pressure leads to the formation of activated carbon black; this form of carbon is characterized by larger and more crystalline graphitized carbon particles (~ 20-30 μm) with distinct micro-porosity and varying BET surface area (200-1200 m²g⁻¹) [6].

Activated carbon black is often confused with activated carbon. Activated carbon is a common amorphous carbon, characterized by high pore volume (~ 2.25 cm³g⁻¹) and surface area (~ 4100 m²g⁻¹) [10-13]. Nitrogen adsorption isotherms revealed that activated carbons contain micro- and macro-pores with the meso-pore content being much lower [12].

The chemical characteristics (acidic / basic) of activated carbons depend on the chemical heterogeneity of the surface (the amount of non-carbon heteroatoms present in carbon structure) [14].

The presence of surface groups containing oxygen (such as carboxylic acid / anhydride, lactone, and phenolic hydroxyl [15]) on the outer surface of activated carbon increases the surface acidity and adsorption ability [16-19] of the material [13]. Gas and liquid phase oxidations are employed to incorporate oxygen containing acidic groups on the activated carbon surface [20]. Gas phase oxidation results in an increase of hydroxyl and carbonyl groups on the surface of activated carbon [13], whereas liquid phase oxidation
leads to an increased amount of carboxylic and phenolic hydroxyl groups on the surface of activated carbon [20, 21].

The presence of nitrogen groups on the surface of activated carbon increases the basicity of the material and improves the interaction between the carbon surface and acid molecules (such as covalent and hydrogen bonding) [13]. Nitrogen groups can be incorporated onto activated carbon surface via reactions with nitrogen reagents (NH₃, nitric acid, and amines) [13] or precursors [22-25].

The detection of oxygen / nitrogen groups on the surface of activated carbon is achieved by titration [15, 26-29], desorption [27, 30-36], X-ray photoelectron spectroscopy [37-42], Fourier Transform Infrared Spectroscopy (FT-IR) [43-46], NMR [47], Inverse Gas Chromatography [48] and surface imaging techniques, such as SEM and STM [32].

The high surface area (~250 m² g⁻¹ for Vulcan XC-72), low cost and availability of CBs transform it to an attractive material for fuel-cells [49]. Carbon black is widely used as electrocatalyst support but still suffers from issues that decrease the catalytic activity of the material. The presence of organo-sulphur impurities and deep micro-pores on carbon surface as well as the stability of carbon are the most important. Catalyst nanoparticles are trapped in the micro-pores and do not have access to reactants/Nafion® resulting to a decrease of catalytic activity [49]. Carbon black is also unstable under the highly acidic/alkaline conditions of a fuel-cell resulting to the corrosion of carbon support and detachment of catalyst nanoparticles [50]. As a result, extended research is being conducted on the use of other allotropic forms of carbon in fuel-cells.
2.1.2 Diamond

Diamond is another natural allotrope of carbon that has cubic structure in which each atom uses sp\(^3\) orbitals to form four strong, covalent bonds. These bonds contribute to the hardness and high melting point of diamond [6]. On diamond \{1, 0, 0\} the surface atoms reconstruct and form π-bonded, symmetric dimers arranged in rows (~ 2.5 A inner distance). This causes a further splitting of the dimer orbitals and the formation of a band gap (~ 1.3eV) between occupied and unoccupied surface states [51]. On the contrary, on diamond \{1, 1, 0\} and \{1, 1, 1\} surfaces, the bonds are arranged in symmetric π-bonded chains without dimerization. Even though the inner distance between the π-orbitals (~ 1.5 and 1.4 A for \{1, 1, 0\} and \{1, 1, 1\} surfaces respectively) is smaller than the distance between π-dimers on \{1, 0, 0\} surface, the distance between the π-bonded chains is large (3.6 and 4.4 A respectively). As a result, a π-electron system is formed along the chains and these surfaces obtain metallic character [51].

Undoped diamond is not an attractive material for fuel-cells since it is an electrical insulator with a band gap greater than 5eV [49]. However, boron doped diamond is often used as electrocatalyst support material in fuel-cells [52-56] due to the improved conductivity, high electrochemical stability and corrosion resistance in acidic and alkaline media [57-59].
2.1.3 Fullerenes

Fullerenes are closed carbon molecules with sphere-like shape, a hollow core and diameters below 1 nm [60]. The most stable fullerene, C\textsubscript{60}, is built of carbon atoms with sp2-hybridization assembled in a truncated icosahedron. It consists of 60 carbon atoms made up of 20 hexagons and 12 pentagons, which result to the quasi-spherical structure of the molecule (Fig. 1) [60]. The molecular structure of fullerene results in a closed-shell electronic structure with highly degenerate π- and σ-derived molecular electronic states including the π-derived fivefold degenerate highest occupied molecular orbital (HOMO) and the triply degenerate lowest unoccupied molecular orbital (LUMO) [60, 61]. According to the isolated pentagon rule, separate 60-atom cages are held together by weak forces in order to avoid the contact of their surface pentagons and thus increase the stability of fullerene.

Figure 1. Structure of the C\textsubscript{60} fullerene molecule consisted of 20 hexagons and 12 pentagons with carbon atoms at each corner (Reprinted from [60] with permission from Elsevier).
2.1.4 Mesoporous Carbon (MC)

Mesoporous carbon is a porous carbon material with pore size varying between 2-50 nm [62] and can be classified to ordered (OMC) and disordered (DOMC) pore structure [63-75]. The mesopores in irregular structure carbon are isolated and the pore size distribution is wider than OMC [62].

![Figure 2. Mesoporous carbon nanospheres (~ 180 nm diameter) (Reprinted with permission from [76] - Copyright © 2013 American Chemical Society).](image)

The pore structure of mesoporous carbon is controlled via the "hard-templating" method [77] where inorganic porous materials such as alumina membranes [78], zeolites [79], xerogels [22, 80], opals [81], micelles [82] and ordered mesoporous silica [83-90] are used as templates. However, the structure and morphology of the produced mesoporous carbon materials are limited to the parent template [76] and thus new alternative methods are being investigated. These novel synthesis techniques include the evaporation-induced self-assembly (EISA) [91-94] and hydrothermal method [76, 95]. Highly ordered mesoporous carbon with large uniform pores and high surface area was obtained.

Mesoporous carbon has higher surface area and very low amount of micropores compared to Carbon black (Vulcan) [72]. Hence, there is high metal dispersion and mass
transport resulting to higher catalytic activity [72]. Moreover, mesoporous carbon possess good chemical and mechanical stability as well as electrical conductivity and hence, this material has great application potential to a wide range of applications including hydrogen storage, sensors, catalysts, catalyst supports and electrochemical double layer capacitors [71, 72, 83, 96-98].

2.1.5 Carbon Nanotubes (CNTs)

CNTs consist of cylinders made of graphite layers that are closed at both ends. Both single- (SWCNTs) and multi-walled nanotubes (MWCNTs) exist, with diameters of a few nanometers and lengths of the order of 1 mm[6]. Nanotubes are classified by the wrapping vector (n, m) corresponding to the direction and distance in which the graphite layer is wrapped up [60] (Fig. 3). The arm-chair (n, n) and the zigzag (n, 0) tubes that have reflection planes are achiral, whereas all other tubes with independent n and m are chiral. Metallic nanotubes are characterized by wrapping vectors where n-m = 3·l (l=0, 1, 2, 3, etc) whereas all the other tubes are semiconductors [99, 100]. An interesting property of both fullerenes and carbon nanotubes is their ability to entrap atoms of other elements within their molecular structure. In this respect hydrogen storage in carbon nanotubes is of particular interest to fuel-cell developers.
Figure 3. a) Structure of 2-D graphite layer (nanotube precursor). The primitive lattice vectors R_1 and R_2 are depicted. CNTs can be envisaged as wrapped up graphite layers whereby the wrapping direction and distance are given by a single vector. The wrapping vector (6, 5) is shown for illustration (Reprinted from [60] with permission from Elsevier); b) Transmission electron microscopy (TEM) image of CNT (Reprinted from [101] with permission from Elsevier).

2.1.6 Carbon Nanofibers (CNFs)

CNF is an industrially produced derivative of carbon formed by the decomposition and graphitization of rich organic carbon polymers (Fig. 4). The most common precursor is polyacrylonitrile (PAN), as it yields high tensile and compressive strength fibers that have high resistance to corrosion, creep, and fatigue. For these reasons, the fibers are widely used in the automotive and aerospace industries [6]. Carbon fiber is an important ingredient of carbon composite materials, which are used in fuel-cell construction, particularly in gas-diffusion layers where the fibers are woven to form a type of carbon cloth.
2.2 Electrochemical Properties

During the last several years, extensive research has focused on the application of carbons as electrode materials because of their availability, physicochemical properties, processability, and relatively low cost. Carbon electrodes are thermally and mechanically stable, chemically resistant in different solutions (from strongly acidic to basic) as well as chemically inert [63, 103, 104].

Carbon blacks are promising electrode materials due to their relatively high activities and long lifetimes in contrast to the lower activity or rapid deactivation of the other carbonaceous materials [105-109]. These catalytic characteristics of carbon blacks are attributed to their microstructure that has many active sites consisted of edges and defects in nanosized graphitic layers [106, 107, 110].

Figure 4. High resolution TEM micrograph of Carbon nanofiber (Reprinted with permission from [102] - Copyright © 2004 American Chemical Society).
2.2.1 Intercalation Reactions

The electrochemistry of black carbon can be described by two types of reactions, namely intercalation and surface reactions.

In the intercalation reactions, ions (anions X^- or cations M^+) penetrate into the van der Waals gaps between the ordered carbon layers resulting in the enlargement of their interlayer distance [1, 111]. The corresponding charges are conducted by carbon and accepted into the carbon host lattice.

\[
\begin{align*}
C_n + M^+ + e^- &\leftrightarrow M^C_n^- \quad \text{Cathodic reduction} \\
C_n + X^- &\leftrightarrow C_n^X + e^- \quad \text{Anodic oxidation}
\end{align*}
\]

Intercalation reactions (1) represent the ideal case; there is an increase in the inter-layer distance while the carbon atom arrangement within the layers remains unchanged; that is topotactic. However, during intercalation of cations from polymer [112] and solid electrolytes [113], ternary phases ($M^+(solv), C_n^x(solv)/C_n^y(solv), X^-$) are produced because the solvent from the electrolyte is also accepted into the carbon lattice.

\[
\begin{align*}
C_n + M^+ + e^- + ysolv &\leftrightarrow M^+(solv), C_n^- \quad \text{Cathodic reduction} \\
C_n + X^- + ysolv &\leftrightarrow C_n^x(solv), X^- + e^- \quad \text{Anodic oxidation}
\end{align*}
\]

From the degree of solvation it is possible to distinguish between two-dimensional and three-dimensional solvated phases (Fig. 5) [1].
Figure 5. Three-dimensional and two-dimensional solvated and unsolvated cationic and anionic intercalation compounds; S = Solvent [1].

In the two-dimensional solvates, the distance between the carbon layers is determined either by the size of the solvent molecule [114] or by the size of the ions [115, 116].

2.2.2 Surface Reactions

The *surface reactions* of carbon black are generally reactions of C atoms at the edges of the layers or at other lattice defects, or reactions of functional groups that are bound to such C atoms. Surface reactions are of particular interest on the performance of carbon as electrochemical double layer capacitors [117-120]. The presence of oxygen groups on the surface of carbon affects its pseudo-capacitance. Pseudo-capacitance is significantly increased with an increase in the number of surface oxygen groups present [117]. The formation of CO surface complexes (hydroxyl, carbonyl, quinone) are responsible for the
enhancement in capacitance and can undergo the quinone/hydroquinone redox pair mechanism (3) [118].

\[
C_xO + H^+ + e^- \Leftrightarrow C_xOH
\]

(3)

Potential sweep measurements are employed to determine the pseudo-capacitance of carbon [117] and an increase in capacitance was reported upon carbon oxidation [117].

Electrochemical carbon oxidation during fuel-cell operation has been extensively studied [121-160] as it is detrimental to the performance and lifetime of the fuel-cell. Carbon is oxidized to carbon dioxide at potentials above its standard potential of 0.207 V (vs. NHE). Even though this potential value implies that carbon is unstable to electrochemical carbon corrosion, the slow kinetics of the reaction towards oxidation ensures the stability of carbon under fuel-cell conditions [157].

\[
C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^- \quad E_o = 0.207 \text{ V (vs. NHE)} \]

(4)

Carbon loss can lead to a decrease in the conductivity of catalyst layer, reduction of electrochemically active surface area and aggregation/detachment of Pt particles from the support [142, 161, 162].

A mechanism for carbon oxidation reaction has been proposed by Gallagher and Fuller [146]. It is assumed that there are two sites present on carbon surface; active sites (marked with #) which are the rate determining steps of CO2 formation and inert sites (marked with *) representing the CO2 loss and simultaneous oxide formation.
Carbon oxidation mechanism starts with the formation of C\(^\#(H_2O)_{ads}\) catalytic site that will eventually evolve CO\(_2\) (eq. 5).

\[
C^\# + H_2O \rightarrow C^\#(H_2O)_{ads}
\]

(C\(^\#(H_2O)_{ads}\) further react with C\(^\#OH\) catalytic sites leading to the formation of C\(^\#O\) intermediates. This reaction is considered to be the rate determining step (eq. 6).

\[
C^\#(H_2O)_{ads} + C^\#OH \rightarrow C^\#OC\(^\#\)OH + 2H^+ + 2e^-
\]

The third step of the mechanism involves the reversible formation of the passive surface oxide C\(^\#xO\) (eq. 7). An electron transfer of 2.6 per oxygen atom removed was required during the reduction of chemically produced oxides on carbon [146]. This value is in accordance with previous reports in the literature [163].

\[
xC^\# + H_2O \leftrightarrow C^\#_xO + 2H^+ + 2e^-
\]

The next steps of the carbon oxidation mechanism describe the electrochemical reduction of the oxidized carbon surface. Catalytic oxide is consumed until the concentration of \# sites reaches equilibrium (eq. 8), while C\(^\#O\) oxide is reduced at high potentials (> 1 V vs. SHE) resulting to the formation of quinone (eq. 9). As the quinone (C\(^\#_xO_2\)) production is increasing, more catalytic oxides are being consumed (eq. 10).

\[
2C^\#OH + (x-2)C^\# + H_2O \rightarrow C^\#_xO_3 + 4H^+ + 4e^-
\]

\[
C^\#_xO + C^*O \rightarrow C^\#_xO_2 + C^*
\]

\[
2C^\#OH + (x-2)C^\# + H_2O + C^\#_xO_2 \rightarrow C^\#_xO_3 + C^\#_xO_2 + 4H^+ + 4e^-
\]
The final step of the proposed carbon oxidation mechanism takes into account the oxidation-reduction reaction between quinone (C\(\text{\textsubscript{x}}\text{\textsubscript{2}}\text{O}_2\)) and hydroquinone (C\(\text{\textsubscript{x}}\text{\textsubscript{2}}\text{OH}_2\)), which is dominant in the cyclic voltammetric studies of oxidized carbons [120, 164].

\[
C\text{\textsubscript{x}}\text{\textsubscript{2}}\text{OH}_2 \leftrightarrow C\text{\textsubscript{x}}\text{\textsubscript{2}}\text{O}_2 + 2H^+ + 2e^- \quad (11)
\]

Even though the proposed mechanism is an important step towards understanding the carbon oxidation process, there are still limitations in the model. The most significant is the treatment of passive oxide (eq. 7). Experimental results demonstrated broad reduction peaks after extended electrochemical oxidation [165]; however this model does not reproduce that behavior. Hence, further research is needed to fully explore the formation of passive oxide.

Additional theoretical models on carbon oxidation were also developed [166-168]. It was reported that the anode Pt loading, membrane thickness and cell potential affect carbon corrosion; high Pt loading on the anode and cell potential as well as thin membranes accelerate carbon corrosion rate. The increase of carbon oxidation rate was confirmed experimentally, and it was demonstrated that the formation of intermediate PtOH species on platinum surface affect carbon oxidation rate at potentials lower than 1 V (vs. SHE) [168]. Recently, a straightforward physics-based model was constructed, proving that an increase of ORR exchange current density, RH or cell temperature increases carbon corrosion rate [167].
Potentiodynamic and constant potential measurements are used to investigate carbon corrosion [148-151]. The rate of corrosion under varying potentials is higher than under constant potential [160]. At constant potential, only the fraction of carbon with low activation energy is energetically favored to undergo corrosion [160], while surface oxide layers may build up reducing the carbon corrosion rate [162]. In contrast, under varying potentials, the rate of carbon corrosion is high since the time duration of applied high potentials is not enough to produce irreversible oxide layers [160].

Carbon corrosion rate depends on the upper and lower potential limit [160]; an increase in carbon oxidation rate was observed when anodic potential limit was increased and cathodic potential limit was decreased (Fig. 6). This phenomenon is due to the strong electro-oxidation at high potentials and to the creation of new defects by chemical oxidation in the low potential region [160]. Progressing from these newly generated defects, carbon corrosion is enhanced even at less degrading potentials [160].
Figure 6. Carbon corrosion rates during dynamic and constant-potential measurements (Reprinted from [160] with permission from Elsevier).

Despite the previous efforts on carbon oxidation, further research is needed to fully explore the effect of potential cycling and start-up/shut-down cycles on carbon oxidation mechanism [158]. The rate determining step for carbon corrosion (oxidation of surface CO$_{ad}$ species to CO$_2$) is also reported to be catalyzed by the presence of Pt [138, 160, 169], even though more research is needed to verify this claim.

Carbon corrosion under Phosphoric Acid Fuel Cells (PAFCs) conditions. Carbon corrosion is also a detrimental factor to the performance of PAFCs. At constant potential, two anodic processes occur during the electro-oxidation of carbon in H$_3$PO$_4$ solution at 135°C; formation of surface oxide on carbon and CO$_2$ evolution, both decreasing with time. These processes are independent of each other as surface oxide formation does not inhibit CO$_2$ formation. As the surface oxide coverage of carbon is increasing, CO$_2$
evolution becomes the rate determining step [149]. Assuming a four electron corrosion process [141], carbon reacts with H\textsubscript{2}O to form CO\textsubscript{2} (eq. 12).

\[
C + H_2O \rightarrow CO_2 + 4H^+ + e^- \tag{12}
\]

Surface oxides consist of carboxyl and quinone groups [170, 171]. FTIR studies demonstrated a band at 1712 to 1527 cm-1 correlated to the C=O bonding in quinone and a band at 1335 to 1000 cm-1 correlated to the coupled C-O bonding and OH stretching in the carboxyl groups (COOH) [170, 172]. The concentration of these surface oxides on carbon black (Vulcan XC-72) was measured by potentiodynamic sweep technique and it was approximately 10^{-10}-10^{-11} moles/cm2 [120].

Comparison of the corrosion characteristics of Vulcan XC-72 and acetylene black after heat treatment at 200\textdegree C demonstrated an increase of the carbon corrosive resistance, even though the dispersion of the supported metal catalyst is decreased [173].

2.3 Applications

The above mentioned unique properties of carbon make it to an attractive material that is widely used in various electrolytic processes in chemical industry such as reduction of Nitrobenzene [174-177] and Nitraniline [178], Chlorine [179-183] and Aluminum [184-189] production, metal refining [190-194], etc. A few representative applications of carbon are reviewed below.
2.3.1 Batteries and Capacitors

Nowadays, there is high demand for high power and high energy sources due to the numerous portable electronic devices and emerging electric vehicles. The most common energy source that can provide the required power is the Li-ion battery as it can store large amount of energy in a small volume and low weight [195-199].

Carbonaceous materials are used nearly exclusively as negative electrodes in Li-ion batteries and as fillers to improve the electrical conductivity of the composite material. Carbonaceous materials are characterized by good cycling behavior and electronic conductivity, low redox potentials and Li storage capability depending on carbon type [199] (disordered carbon can store higher amount of Li than graphitic carbon [199]). Corrosion resistance in aqueous systems (acid/alkaline) is the most important property of the material as it affects significantly the battery performance. CNTs composites (such as Si, Sn, SnO, and TiO$_2$) showed increased stability in aqueous systems and enhancement of reversible capacity [196, 200]. However, batteries suffer from slow power delivery and hence, their use in energy storage systems with fast storage and high power demand, is limited [201].

Electrochemical capacitors are best suited for these energy storage systems since they can provide high specific power (10kWkg$^{-1}$), long cycle life (greater than 10^5) and fast charge/discharge [202]. Currently, electrochemical capacitors are widely used in electronics and industrial power systems [203, 204]. Carbon materials are mainly used in these devices due to their high surface area, high electrical conductivity and low cost.
Carbon composites with metal oxides [205-210] and conducting polymers [211-214] improve significantly the capacity of the system and electrical conductivity of electrodes.

2.3.2 Biosensors

A biosensor is a device that can provide specific analytical information (DNA, viruses, antigens, enzyme, and cells detection) by using a biological recognition element in direct contact with a transduction element [215]. Carbon nanomaterials and specifically CNTs are widely used in these electrochemical sensors due to their attractive characteristics (high conductivity and sensitivity, good selectivity and reversibility, fast response time, chemical and thermal stability, electronic and optical properties) [215-217] and their ability to promote electron transfer in electrochemical reactions [218, 219].

Graphene layer and reduced graphene oxide are also used for the fabrication of gas sensors as they can exhibit extremely low detection limits (ppb) for a variety of gases and vapors [220-233].

Graphene layer is very sensitive to changes in the chemical environment due to its high electron mobility at room temperature, high surface area resulting to high sensitivity to adsorbed molecular species and high electrical conductivity [228]. Gas molecules act as donors or acceptors and they are adsorbed on the surface of graphene layer altering the electrical conductivity of the gas sensor [228]. Several synthesis methods are being used for the fabrication of graphene layer based gas sensors including i) mechanical exfoliation of graphite leading to the formation of graphene layer [234]; ii) chemical
vapor deposition [235-237]; iii) epitaxial growth [238, 239]; and iv) chemical exfoliation of graphene oxide to graphene layer [240-242].

Moreover, chemically reduced (hydrazine) graphene oxide (rGO) demonstrated excellent performance for the detection of nitric oxide, warfare and explosive agents at very low concentrations (ppb) [220, 229]. However, hydrazine is extremely toxic and incorporates extra nitrogen functional groups on the graphene layer surface [230], reducing the response time of the sensor [231].

Alternative rGO synthesis routes involve the i) partial reduction of graphene oxide via low temperature annealing (~ 300°C) under inert atmosphere [232]; and ii) partial reduction of graphene oxide with ascorbic acid [233].

In the case of rGO synthesized by thermal annealing, rGO demonstrated p-type semiconducting behavior and good performance for the detection of nitric oxide (ppm) [232]. The sensitivity was attributed to the electron transfer from rGO to NO₂ resulting to enhanced electrical conduction and to thermal annealing during rGO synthesis procedure; the latter leads to the formation of additional defects on the surface of rGO acting as adsorption sites for gaseous molecules [232]. On the contrary, rGO synthesis via ascorbic acid reduction of graphene oxide resulted to a highly sensitive gas sensor able to detect chemically aggressive vapors such as NO₂ and Cl₂ at very low concentrations (100 ppm-500 ppb) [233].
Despite their potential, graphene layer / reduced graphene oxide as well as CNTs still face challenges. The most severe drawback for the application of these carbon materials is heterogeneity as it is not possible to fabricate consistent and reproducible sensors [243]. Further research in the synthesis, purification and biofunctionalization of CNTs will increase their usefulness in biosensors [243]. On the graphene-based gas sensors front, further research is needed to simplify the fabrication and operation of these devices. Reduced graphene oxide based sensors in particular are expensive as it is required to oxidize graphite to graphene oxide and successively reduce it into reduced graphene oxide using strong reducing agents.

2.3.3 Photo-electrochemical Water Splitting

Photo-electrochemical water splitting (capturing and storing solar energy into the chemical bond of hydrogen) is a promising way to produce clean energy and is expected to play a significant role in the future with the depletion of fossil fuel supplies [244-251]. Many materials have been investigated to discover a suitable photo-anode [252-259]; among them, titanium oxide (TiO$_2$) is promising due to its low cost, chemical inertness, UV photo-activity and chemical stability [244, 245, 260-263]. However, due to the large band gap (~ 3-3.2eV) and short carrier diffusion length, the conversion efficiency of titanium oxide is reduced [244]. In an attempt to shift the optical response of titanium oxide from ultraviolet to visible spectra range, titanium oxide was doped with nitrogen [264], carbon [244, 245, 265-267] and sulfur [268]. The incorporation of carbon into titanium oxide resulted in the formation of an intragap band (~ 1.3-1.6eV) [265, 269] into
the band gap of TiO$_2$ that can be used to absorb photons at low band gap energy [266, 267, 270]. This effect resulted in high photo-conversion efficiency under visible light [267, 269]. Moreover, carbon modified TiO$_2$ synthesized by wet process using glucose solution as the carbon source demonstrated a 13-fold increase in photo-catalytic activity compared to titanium oxide while it increased only 8-fold when tetrabutylammonium hydroxide was used as the carbon source [267].

Apart from titanium oxide, two other carbon modified semiconductors were studied in water photo-electrolysis due to their low band gap energy, namely iron (Fe$_2$O$_3$) and tungsten oxide (WO$_3$) [245, 271]. Carbon modified iron oxide demonstrated promising photo-conversion efficiency; \sim 4% and 7% for modified oxides synthesized in oven and by thermal oxidation respectively [271]. Also, carbon modified tungsten oxide (C-WO$_3$) photo-catalysts exhibited a \sim 2 % photo-conversion efficiency [245].

2.3.4 Electrolytic Synthesis of Hydrogen Peroxide (H$_2$O$_2$)

Another application of carbon and carbon hybrids is their use as electrode material in proton exchange membrane (PEM) electrochemical flow reactor for the production of hydrogen peroxide (H$_2$O$_2$).

Tatapudi and Fenton [272] investigated three different catalysts, namely gold, graphite and activated carbon, for the production of H$_2$O$_2$ by oxygen reduction at the cathode of a PEM flow reactor. Graphite (10 mgcm$^{-2}$ catalyst loading with 20% Teflon binder) produced the highest amount of peroxide (25 mgL$^{-1}$ at 2.5 V vs. SHE) while gold and
activated carbon produced lower peroxide at higher applied voltages (~ 3.5 V vs. SHE) than the graphite. It was also reported that an increase in the percentage of Teflon binder results in an enhanced electrode resistance leading to lower cell current and hence lower cell performance [272, 273].

Mesoporous nitrogen-doped carbon was also used as catalyst for the production of hydrogen peroxide [274]. H₂O₂ was produced in a three electrode setup at 1600 rpm rotation speed and ~ 325 µgcm⁻²geo catalyst loading. H₂O₂ concentration (Fig. 7) was approximately 20 mgL⁻¹ at constant potential of 0.1 V (vs. reversible hydrogen electrode (RHE)) showing that nitrogen-doped carbon is a promising catalyst for the electrochemical production of H₂O₂ [274].

![Figure 7. Photometric determination of H₂O₂ as a function of time; current (circle) and concentration (square) behavior with time for the electrochemical H₂O₂ production is shown (Reprinted with permission from [274] - Copyright © 2012 American Chemical Society).](image)
Moreover, the effect of operating conditions (applied current, electrolyte concentration, air flow rate and pH) on the amount of electro-generated H₂O₂ was investigated [275]:

i) *Effect of applied current.* H₂O₂ production rate is increased as the applied current is increasing from 60mA to 100mA. However, above 100mA the peroxide production rate is decreasing. At 60mA the cell potential is 3 V (vs. saturated calomel electrode (SCE)) while at 100, 200, 300 and 500mA is 3.4, 4.3, 5.4 and 6.6 V (vs. SCE) respectively [275]. At potentials higher than 4.3 V (vs. SCE) the reduction of oxygen leads to the formation of water [276] and not H₂O₂ and thus the amount of electro-generated peroxide is reduced [275].

ii) *Effect of electrolyte concentration.* Sodium sulfate (Na₂SO₄) is used as the electrolyte solution; low electrolyte concentration results in low conductivity of the solution and thus higher cell potential is needed to reach the required current density [275]. Cell potential was 6.7 V and 3.4 V (vs. SCE) for sodium sulfate concentration of 0.025 and 0.05 M respectively. Thus, increasing the electrolyte solution enhanced the electro-generation rate of H₂O₂. However, increasing the sodium sulfate concentration from 0.05 M to 0.1 M had no significant effect on the electrochemical generation of hydrogen peroxide [275].

iii) *Effect of pH.* At pH values below 3, reduction of H₂O₂ to water and hydrogen gas evolution takes place (eq. 13) reducing the amount of H₂O₂ generated in the medium, while at pH values above 3, proton concentration is decreasing and hence H₂O₂ production rate is reduced as well [275].
iv) Effect of air flow rate. Air was used instead of pure oxygen due to its low cost. An increase in the air flow rate results to an increase of the amount of H₂O₂ produced. High flow rate leads to high mass transfer rate of dissolved oxygen and hence enhanced peroxide production [275].

Based on these results, it was concluded that the optimum conditions for H₂O₂ electro-generation are 0.05 M sodium sulfate, 100 A applied current, pH = 3 and 2.5 L min⁻¹ air flow rate [275]. These conditions were used to investigate the electrochemical generation of H₂O₂ of three different carbon based cathode materials: graphite, activated carbon on graphite (AC/graphite) and carbon nanotubes on graphite. The amount of electro-generated H₂O₂ using CNTs/graphite was three times higher than that of AC/graphite and seven times higher than that of bare graphite (Fig. 8). CNTs/graphite has large specific area and high amount of meso-porous pores leading to facile oxygen reduction on the cathode and hence increased H₂O₂ production [275].

![Figure 8](image_url)

Figure 8. Electro-generated H₂O₂ on bare graphite, AC/graphite and CNTs/graphite (Experimental conditions: 180 min electrolysis, room temperature, 0.05 M Na₂SO₄,
100mA, pH = 3, air flow rate = 2.5 Lmin⁻¹ - Reprinted from [275] with permission from Elsevier).

3. Carbon, Carbon Hybrids and Carbon Composites in PEFCs

3.1 Carbon as Structural Component in PEFCs

A PEFC consists of two electrodes in contact with an electrolyte membrane (Fig. 9). The membrane is designed as an electronic insulator that separates the reactants (H₂ and O₂/air) and allows only the transport of protons / hydroxyl ions and water between the electrodes. The electrodes are constituted of a porous gas diffusion layer (GDL) and a catalyst (usually platinum supported on high surface area carbon) containing active layer. This assembly is sandwiched between two electrically conducting bipolar plates within which gas distribution channels are integrated [277].

The function of the electrolyte membrane is to facilitate transport of protons / hydroxyl ions from anode to cathode and to serve as an effective barrier to reactant crossover. The electrodes host the electrochemical reactions within the catalyst layer and provide electronic conductivity, and pathways for reactant supply to the catalyst and removal of products from the catalyst [277]. The GDL is a carbon paper or cloth of 0.2-0.5 mm thickness that provides rigidity and support to the membrane electrode assembly (MEA). It incorporates hydrophobic material that facilitates the product water drainage and prevents the gas paths from flooding [277]. The amount of hydrophobic resin used for carbon coating is also important. Resin at high concentrations blocks the micro-pores on the surface of carbon improving the hydrophobicity of the material at the expense of conductivity [278, 279]. The active layer consists of catalyst particles, ionomer and pore
spaces which form a three-phase boundary where the electrochemical reaction takes place. A good electrode has to effectively facilitate the trade-off between enabling high catalytic activity, retaining enough water to guarantee good proton conductivity in the ionomer phase, and having an optimal pore size distribution to facilitate rapid gas transport [277]. All the components of the MEA need to be stable (under both chemical and mechanical stresses) for several thousands of hours in the fuel-cell under the prevailing operating and transient conditions.

Figure 9. Cross section of a PEFC.

3.2 Carbon as PEFC Catalyst Support

The basic function of the catalyst support is to: i) provide good electrical conductivity with high surface area, ii) bring the catalyst particles close to the reactants via the pore structure and iii) provide corrosion stability under oxidizing conditions [6, 49, 280-284].
The choice of support material is vital in determining the performance and durability of the catalyst [280].

Carbon black (Vulcan XC-72R) is the most commonly used support for Pt and Pt-alloy catalysts for fuel cells due to its high surface area (~ 250 m2g$^{-1}$) and low cost. It consists of spherical graphite particles (less than 50 nm diameter) [49] with ~ 0.35 nm interplanar spacing [49]. However, carbon black is susceptible to oxidation in low (potential greater than 1.2 V vs. SHE) and high temperature (potential lower than 0.9 V vs. SHE) fuel cells resulting in active surface area loss [122] and alteration of pore surface characteristics (generation of surface oxides CO$_{ad}$) [136]. In automotive applications, high potentials occur during *i)* complete fuel starvation of a cell in the stack; and *ii)* during partial fuel starvation on the anode side of a cell in the stack due to limited supply of hydrogen [131, 285] or the presence of hydrogen-air over the active area during start up and shut down of the fuel cell [131]. During complete fuel starvation, the anode potential of the starved cell is greater than the cathode resulting to water electrolysis and carbon oxidation on the anode to form the required electrons and protons for the oxygen reduction reaction at the cathode [286]. During partial fuel starvation, oxygen is present in the hydrogen deficient areas on the anode causing a decrease of the in-plane membrane potential and hence potential shifts [129, 131]. The above mentioned high potential conditions result to facile oxidation of the carbon support and thus significant performance losses [160].

\[
C + H_2O \rightarrow CO_{ad} + 2H^+ + 2e^- \\
CO_{ad} + H_2O \rightarrow CO_2 + 2H^+ + 2e^- \tag{14}
\]
Transmission (TEM) and Scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as BET measurements are usually employed for the physical characterization of the carbon supports. Cyclic voltammetry is used to characterize the stability of the carbon supports [133] along with chronoamperometry (corrosion current measurement) [120, 173], while electrochemical quartz crystal microbalance (EQCM) measurements monitor the carbon mass loss during the CV potential scans [287, 288]. Mass spectroscopy [130, 132] and non-dispersive infrared spectroscopy [160] are also utilized to monitor the generation of CO$_2$ under electrochemical oxidation conditions.

Alternate support materials are investigated to replace carbon black as support in order to provide higher corrosion resistance and surface area. These supports can be classified into i) carbon nanotubes and fibers; ii) mesoporous carbon; and iii) multi-layer graphene / reduced graphene oxide; and they are presented in detail in the following section. Mesoporous carbon is characterized by high surface area and porosity leading to higher activity and stability than carbon black [62, 289-291]. The introduction of CNTs [96, 292-294] and multi-layer graphene / reduced graphene oxide [295-303] as electrocatalyst supports resulted to high catalyst utilization and thus high ORR activity. The high crystallinity and surface area of those materials effectively provide the suitable support for the dispersion of catalyst nanoparticles. Moreover, the two dimensional nature of graphene allows both the edge and basal planes to interact with the catalyst leading to high conductivity and electron transfer.
3.2.1 Carbon Nanotubes (CNTs) and Fibers (CNFs)

CNTs (single- or multi-walled) are also used as catalyst support in PEFCs. SWCNTs have large surface areas while MWCNTs are more conductive than SWCNTs [96, 160, 292].

Pristine CNTs are chemically inert and metal nanoparticles cannot be attached [160]. Hence, research is focused on the functionalization of CNTs in order to incorporate oxygen groups on their surface that will increase their hydrophilicity and improve the catalyst support interaction [160]. These fabrication methods include impregnation [304, 305], ultrasound [306], acid treatment (such as H_2SO_4) [293, 307-309], polyol processing [310, 311], ion-exchange [312, 313] and electrochemical deposition [293, 314, 315]. Acid-functionalized CNTs provide better dispersion and distribution of the catalysts nanoparticles [293, 307-309].

Conjugated polymers such as polypyrrole (Ppy) and polyaniline (PANI) form covalent bonds between Pt atoms and N atoms in PANI enabling strong adhesion of Pt nanoparticles onto the polymer [316-318]. Electron conducting PANI was used to bridge the Pt nanoparticles and CNT walls with the presence of platinum-nitride (Pt-N) bonding and π-π bonding. The synthesized PANI binds across the CNT as a result of π-π bonding while Pt nanoparticles (~ 2-4 nm diameter) are loaded onto the CNT due to polymer stabilization and existence of Pt-N bonding [316] (Fig. 10). These materials have high electro-activity, and accelerated degradation tests revealed the electrochemical stability of
Pt-PANI/CNT catalysts compared to non-functionalized MWCNTs and commercial carbon black supports [316].

![Figure 10.](image)

Figure 10. a) ECA of the catalysts as a function of the number of potential cycles. b) Schematic showing molecular interactions in the synthesized Pt-PANI/CNT catalyst (Reprinted from [316] with permission from Elsevier).

Another technique to modify the surface of CNTs is the use of ultrasound as it enables the formation of smaller and more uniform nanoparticles [306]. Yang and coworkers [306] compared the effect of ultrasonic treatment and reflux on the surface functionalization of MWCNTs. Ultrasonically fabricated MWCNTs demonstrated higher active surface area and improved CO tolerance due to better dispersion and utilization of the electrocatalyst [306].

Tang and coworkers [319] synthesized Pt-CNT layer acting both as gas diffusion and catalyst layer. CNT was grown in-situ on carbon paper followed by sputter deposition of the Pt catalyst. A maximum power density of 595 mWcm$^{-2}$ (Pt loading ~ 0.04 mgcm$^{-2}$)
was achieved (Fig. 11), which was higher than the power density of both Pt-Vulcan and Pt-CNT-Vulcan electrodes tested (~ 435 and 530 mWcm\(^{-2}\) respectively) [319]. Hydroxyl radicals cannot easily penetrate the rigid structure of CNTs, while carbon black has excess of dangling bonds and defects that oxygen atoms can easily penetrate into [320, 321]. Dangling bonds form surface oxides that lead to higher corrosion rates [320, 321].

Figure 11. Polarization curves of MEA Pt-CNT, Pt-Vulcan and Pt-CNT-Vulcan based MEAs (Reprinted from [319] with permission from Elsevier).

The polarization losses of Pt supported on MWCNTs were also examined [133, 322]. Pt-MWCNTs exhibited higher corrosion resistance and retention of electrochemical active surface area compared to Pt-Vulcan electrocatalysts. Only the outer graphene layers of MWCNTs were damaged, forming defects on the surface of nanotubes [133]. Moreover, MWCNTs prevented the water flooding of cathode catalyst layer by maintaining the electrode structure and hydrophobicity for a long period under continuous anodic potential stress. Ohmic losses were found to be the major cause contributing to the performance loss [322].
The degree of graphitization also plays a significant role on the oxidation resistance of carbon black [164] and MWCNTs; the number of defects on the surface of nanotubes decreases as graphitization % increases resulting in higher electrochemical stability [323]. The higher graphitic content has also been linked to a stronger interaction between metal and carbon support. An increase in degree of graphitization results in stronger π-sites (sp² hybridized carbon) on the support (which are the anchoring sites for the electrocatalyst), strengthening the metal-support interaction [324].

The stability during potential cycling and ORR activity of Pt (20 wt %) supported on MWCNTs and carbon black was also investigated [325, 326]. Two different potential cycling conditions were used, namely lifetime (0.5 to 1.0 V vs. RHE) and start-up (0.5 to 1.5 V vs. RHE). Pt supported on MWCNTs catalyst exhibited a significantly lower drop in normalized electrochemically active surface area (ECA) values compared to Pt supported on Vulcan (Fig. 12), showing that MWCNTs possess superior stability than commercial carbon black under normal and severe potential cycling conditions [325].
Figure 12. Normalized ECA loss due to voltage cycling for Pt/MWCNT (square) and commercial Pt/Vulcan XC-72R (circle); Experimental conditions: 0.5-1.0 V vs. RHE (solid) and 0.5-1.5 V vs. RHE (hollow); 50 mVs\(^{-1}\) scan rate - Reprinted with permission from [325] - Copyright © 2010 Royal Society of Chemistry).

Carbon nanofibers. CNFs are also used as catalyst support in PEFCs. Unlike CNTs, CNFs have a very thin or no hollow cavity. Their diameters are larger than CNTs and can be classified into three types: \(i\) ribbon-like CNF; \(ii\) platelet CNF; and \(iii\) herringbone depending upon the orientation of the nanofibers with respect to the growth axis [49]. Herringbone CNFs are known to have intermediate characteristics between parallel and platelet types, thereby exhibiting higher catalytic activity than the parallel and better durability than the platelet forms [327]. The main difference between CNTs and CNFs lies on the exposure of active edge planes. A predominant basal plane is exposed in CNTs while only the edge planes with anchoring sites for the electrocatalyst are exposed in CNFs [49].
Pt (5 wt %) supported on platelet and ribbon graphite nanofibers exhibited similar activities to those observed by Pt (25 wt %) on carbon black [328]. This phenomenon was attributed to the crystallographic orientations adopted by the catalyst particles dispersed on graphitic nanofiber structures [328]. Also, the electrocatalyst supported on CNFs were less susceptible to CO poisoning than Pt supported on carbon black.

Pt (5-30 wt %) nanoparticles supported on CNFs were also prepared by a modified ethylene glycol method [329]. Pt-CNF based MEAs with 50 wt% Naﬁon® exhibited higher cell performance than the carbon black based MEAs with an optimized 30 wt% Naﬁon® content (Fig. 13). This was attributed to the larger length to diameter ratio of CNFs that allows the formation of conductive networks in the Naﬁon® matrix [329].

![Polarization curves](image)

Figure 13. Polarization curves of Pt/C (BASF-Fuel Cell, 20 wt.%) or Pt/SC-CNFs (home-made, 20 wt.%) based MEAs with varying Naﬁon® amount in the cathode. Experimental conditions: 70°C cell temperature, 100% relative humidity (RH); anode/cathode: H₂/O₂, 200 mLmin⁻¹ flow rate - Reprinted from [329] with permission from Elsevier.
3.2.2 Mesoporous carbon (MC)

Despite the advantages offered by CNTs and CNFs, there are still many obstacles (cost, synthesis methods) to overcome to allow large-scale production. Another type of catalyst support material is mesoporous carbon, which provides high surface area and high conductivity [49]. It can be classified into ordered (OMC) and disordered (DOMC) mesoporous carbon [49]. OMCs have been extensively used as catalyst support materials for fuel cells [62, 72, 289, 290, 330-334]. The large surface area and 3D connected monodispersed mesospheres facilitates diffusion of the reactants, making them very attractive materials as catalyst supports [49].

The effect of MCs pore morphology in the electrocatalytic activity of Pt has been also studied [335]. Pt (20 wt %) was supported on OMC (CMK-3) and disordered wormhole mesoporous carbon (WMC) using microwave polyol process. Both support materials had similar pore characteristics (~ 4 nm pore size) except pore morphology. It was discovered that CMK-3 support provided more electrochemically active Pt support sites and higher active surface area than WMC, leading to superior ORR activity and fuel-cell performance. This enhanced catalytic activity was attributed to the highly ordered structure and good 3D interconnection of the nano-spacings of carbon nanorods, resulting to higher catalyst utilization efficiency compared to WMCs (Fig. 14) [335]. Hence, pore morphology of catalyst support plays an important role in the activity of the supported electrocatalyst.
Figure 14. Effect of pore morphology of the carbon support (CMK-3 and WMC) on the activity of Pt electrocatalyst (Reprinted from [335] with permission from Elsevier).

The effect of surface chemistry of OMCs (CMK-3) has also been investigated [336]. OMCs were functionalized by diluted nitric acid (HNO$_3$) to modify the morphological and textural properties of the support via the introduction of surface oxygen groups. The average size of Pt nanoparticles on the CMK-3 supports was 7-8 nm; in contrast, larger catalyst particles (~ 22-23 nm) were observed (Fig. 15) when CMK-3 supports were treated with concentrated HNO$_3$. Nitrogen adsorption-desorption isotherms revealed lower specific surface area and total pore volume for CMK-3 support (treated with concentrated HNO$_3$), which led to a significant increase of the catalyst particle size. Polarization and power density curves (Fig. 16) exhibited better electrocatalytic behavior for CMK-3 based electrodes (~ 13-27 mWcm$^{-2}$) compared to commercial E-TEK electrodes (9.5 mWcm$^{-2}$), despite their lower electrical conductivity and larger Pt nanoparticles [336]. Ohmic and mass-transfer losses were greater for supports functionalized with concentrated HNO$_3$ due to their decreased electrical conductivity, higher agglomeration, and lower specific surface area [336, 337].
Figure 15. a) TEM images for Pt supported on CMK-3 catalysts treated with diluted HNO₃ for 2 h (Pt/CMK-3 Nd2); b) TEM images for Pt supported on CMK-3 catalysts treated with concentrated HNO₃ for 2 h (Pt/CMK-3 Nc2) (Reprinted from [336] with permission from Elsevier).

Figure 16. Polarization (a) and power density (b) curves of Pt supported on CMK-3 catalysts with different surface chemistry at the anode side of a PEFC working at room
temperature and atmospheric pressure (Reprinted from [336] with permission from Elsevier).

Hayashi and coworkers [331] built an ideal triple-phase boundary inside the mesopores of carbon support in order to examine the electrochemical reactions occurring in nanoscale. Depending on the solvent used (2-propanol) to dilute Nafion®, the reactivity toward oxygen reduction was different. Nafion® dissolved in 2-propanol was able to penetrate deeper into the mesopores and contact with more Pt particles resulting in higher oxygen reduction activity. By changing the Pt precursor, ORR current started to increase at more positive potential, indicating enhanced ORR activity (Fig. 17). Platinum (II) acetylacetonate has been chosen as the new precursor since it is soluble in various organic solvents, increasing the number of Pt particles deposited on the mesopores [330-332].

![Figure 17](image)

Figure 17. Linear sweep voltammograms of (50 wt %) Pt/Carbon black, (30 wt %) Pt-NH$_3$/MC, and (30 wt %) Ptac/MC. Catalyst loading 14μgcm$^{-2}$; experimental conditions: 1600rpm rotating speed and 20 mVs$^{-1}$ sweep rate (Reprinted from [331] with permission from Elsevier).
MCs have also been doped with nitrogen and their stability was investigated [338]. These catalysts were subjected to long-term potential cycling (10,000 cycles between 0.5 and 1 V vs. RHE, 50 mVs\(^{-1}\) scan rate) and their ECA results were compared to Pt supported on high surface area carbon black (Fig. 18). The ECA values of Pt supported on nitrogen doped MCs were higher that Pt-carbon black before and after the testing (90 m\(^2\)g\(^{-1}\) to 67 m\(^2\)g\(^{-1}\) and 75 m\(^2\)g\(^{-1}\) to 55 m\(^2\)g\(^{-1}\) respectively). The mean particle size growth was the main factor of the ECA loss as well as carbon corrosion [338].

![Figure 18](image)

Figure 18. ECA evolution for Pt supported on nitrogen doped MC (square) and Pt supported on high surface area carbon black (circle). Experimental conditions: voltage cycling between 0.5 to 1.0 V vs. RHE, 50 mVs\(^{-1}\) scan rate, room temperature, 0.1 M HClO\(_4\) (Reprinted with permission from [338] - Copyright\(^\circ\) 2012 Wiley).
3.2.3 Multi-layer Graphene and reduced Graphene Oxide doped with Metals / Metal Oxides

Superior to the other carbon forms, the 2-D planar structure of graphene facilitates electron transport and offers high conductivity (10^3-10^4 Sm$^{-1}$) and enormous surface area (2630 m2g$^{-1}$) [228, 242, 295, 298, 339-343].

Multi-layer graphene can be synthesized by i) epitaxial growth [344], ii) chemical vapor deposition [299, 345]; iii) solvothermal synthesis [346] and iv) electrochemical exfoliation [347-349]. However, the most common method used for the production of multi-layer graphene involves graphite oxidation to graphene oxide, followed by exfoliation and reduction of graphene oxide to multi-layer graphene [343]. The oxidation of graphite to graphene oxide can be achieved by the analytical methods developed by Brodie [350], Staudenmaier [351] and Hummers and Offeman [352]. Briefly, graphite is oxidized in concentrated acid with strong oxidizing agents (sodium nitrate, potassium permanganate) and graphene oxide is exfoliated in water due to the hydrophilic property of the material [300, 303, 343]. Finally, graphene oxide is chemically / electrochemically reduced to multi-layer graphene with various reducing agents including hydroquinone [353], hydrogen sulphide [354], sodium borohydride [353] and hydrazine hydrate [355].
Figure 19. Multi-layer graphene synthesis from graphite: a) Chemical oxidation of graphite to graphene oxide; b) Chemical / electrochemical reduction of graphene oxide to multi-layer graphene [343].

However, the multi-layer graphene produced by exfoliation exhibits low conductivity due to chemical process-induced defects and attached chemical groups [356]. To circumvent this issue, highly conductive metal nanoparticles are attached onto multi-layer graphene increasing the electrical conductivity of the material [356]; silver nanoparticles are the most commonly used material to dope multi-layer graphene due to the high electrical and thermal conductivity as well as catalytic activity of silver [356, 357].

Ag doped multi-layer graphene was synthesized by the reduction of silver salt (Ag(NH$_3$)$_2$) / graphene oxide under rapid heating (room temperature to 1000°C at 100°Cmin$^{-1}$ under inert atmosphere; 15 min at 1000°C) [356]. A 3-fold increase in the electrical conductivity of Ag doped multi-layer graphene was exhibited compared to multi-layer graphene due to the fact that Ag nanoparticles act as an electrical bridge
between graphene layers [356]. Moreover, the capacitance of Ag doped multi-layer graphene was significantly increased compared to multi-layer graphene (326 Fg\(^{-1}\) and 109 Fg\(^{-1}\) respectively) [356].

Furthermore, cobalt oxide (Co\(_3\)O\(_4\)) doped reduced mildly oxidized graphene oxide (rmGO) demonstrated high performance in alkaline solutions [358, 359], even though Co\(_3\)O\(_4\) itself has very low ORR activity [358, 359]. Co\(_3\)O\(_4\) doped rmGO demonstrated similar ORR catalytic activity to pristine Pt/C in alkaline media and superior stability [359]. The electron transfer number was approximately 3.9 showing that this material favors 4e\(^-\) oxygen reduction pathway in alkaline solution [359].

Mildly oxidized graphene oxide (mGO) was produced by a modified Hummers method [359], in which a six times lower concentration of potassium permanganate (KMnO\(_4\)) was used (500 mg compared to 3 g in Hummers method) [359]. During the synthesis of Co\(_3\)O\(_4\) doped rmGO, Co(OAc)\(_2\) solution was added into ethanol / GO dispersion and the mixture was stirred for 10 h at 80\(^\circ\)C [359]. Then, the reaction mixture was transferred to an autoclave for hydrothermal reaction at 150\(^\circ\)C for 3 h [359]. During this step, mildly oxidized graphene oxide was reduced to rmGO [359]. The resulted product was centrifuged and washed with ethanol and water [359].

Nitrogen doped multi-layer graphene was prepared by thermal exfoliation of graphitic oxide followed by nitrogen plasma treatment [360]. Pt-multi-layer graphene (PtG) and Pt-nitrogen doped multi-layer graphene (PtNG) based MEAs demonstrated a maximum
power density of 390 and 440 mWcm\(^{-2}\) respectively. The improved performance of PtNG was attributed to the formation of pyrrolic nitrogen defects that increased the anchoring sites for the deposition of Pt on the surface leading to increased electrical conductivity and carbon-catalyst binding [360].

3.2.4 Interaction between the Carbon Support and the Catalyst

Carbon support plays a vital role in the preparation and performance of catalysts since it influences the shape, size and dispersion of catalyst particles as well as the electronic interactions between catalyst and support [125, 361].

Carbon support is a heterogeneous surface consisting of a mixture of basal and edge planes exposed to the surface [362]. Metal particles on the heterogeneous surface are in dispersed state increasing their stability; particles are arranged on the carbon surface at graphene layer edge sites [125]. The charge transfer from metal (catalyst) to carbon support is equal to the number of surface states in the carbon support [363].

i) Effect of the nature of the support. The size and morphology of platinum particles depend on the nature of the support. Analysis of X-ray diffractograms (XRD) of different supports prepared by the same method and with the same metal loading demonstrated that Pt crystallites supported on CNFs were ~ 3 nm while Pt crystallites supported on Vulcan and OMCs were approximately 5.6 and 7.6 nm [364]. Thus, higher crystalline grades of the support are conductive to smaller platinum particle size and higher crystalline structures, which are associated with a strong metal-carbon interaction [364].
The crystalline structure of the metal is also affected by the metal-support interaction. Metal particles supported on CNFs have a highly crystalline structure due to strong metal-support interaction [125], whereas Pt particles supported on Vulcan and OMCs have a more dense globular morphology due to weak metal-support interaction [364]. Hence, the more amorphous the carbon support, the higher the platinum size and the more dense the globular morphology [364].

ii) Effect of the surface chemistry of the support. Fig. 19 shows the relationship between the total number of surface oxygen groups of the support and the Pt crystallite size for each carbon material tested. An increase in the platinum crystallite size is observed as the number of surface oxygen groups is increasing [365].
Figure 20. Effect of the surface chemistry of the support on catalyst properties: relationship between the total number of surface oxygen groups of the support and the average Pt crystallite size for oxidized and non-oxidized (a) CNF; (b) CMK-3; and (c) Vulcan (Reprinted from [364] with permission from Elsevier).

In summary, carbon black is extensively used as catalyst support in PEFCs due to low cost and high availability. However, chemical activation of carbon is required in order to increase the number of anchoring sites for catalyst particles on its surface resulting to high catalyst dispersion and catalyst utilization. Thus, new carbon support materials are
being investigated and are categorized into carbon nanotubes, multi-layer graphene (undoped and doped with metal nanoparticles), reduced graphene oxide (doped with metal oxides), mesoporous carbon and carbon nanofibers. The issue of low catalyst utilization was solved by the introduction of CNTs. Their high crystallinity, surface area and long-term stability made them an attractive substitute of carbon black. Multi-layer graphene and reduced graphene oxide as supports provide facile electron transfer and high conductivity while the high surface area and tailored meso-porosity of ordered MCs allows high metal dispersion in the support. CNFs do not require any chemical pretreatment due to the presence of highly active edge planes on which the catalyst nanoparticles can be attached. Even though the properties on the new support materials are extremely promising, further PEFC testing is required with respect to ORR activity and long-term stability.

4. Carbon Hybrids and Composites as ORR Electrocatalysts in Proton Exchange Membrane Fuel Cells

4.1 Nitrogen-doped Carbon

PEFCs are an attractive alternative power source for mobile and stationary application characterized by low emissions, good energy conversion efficiency and high power density. One of the main obstacles towards the commercialization of this technology is the high cost of component materials (catalyst, membrane, etc.) [366-368].
To circumvent this issue, extensive research has been carried out to either reduce the Pt catalyst usage (or improve catalyst utilization) [369, 370] or to identify alternative non-noble metal catalysts with similar catalytic activity [371]. A promising alternative electrocatalyst are heteroatom-doped carbon nanostructures involving Nitrogen, Sulphur, Phosphorus or other non-metallic elements [372-376]. The most prominent and popular dopant is nitrogen. Nitrogen doping of carbon nanostructure materials can be done directly during the synthesis of porous carbon materials [377-388] or with treatment of already synthesized carbon nanostructures with nitrogen containing precursors (NH$_3$) [389-392].

Nitrogen-doped CNFs [393] prepared via chemical vapor deposition (CVD) demonstrated improved ORR activity. It was attributed to the presence of edge plane defects and nitrogen functionalities within the CNF structure [393, 394]. Fig. 20 shows the measured hydroperoxide (HO$_2^-$) decomposition rates at N-doped and non-doped CNFs according to the chemical decomposition of HO$_2^-$ reaction. The more rapid the hydroperoxide ions decompose, the more facile the ORR kinetics will be, resulting to higher cathode potential [395]

$$\text{HO}_2^- \leftrightarrow \frac{1}{2} \text{O}_2 + \text{OH}^- \quad (15)$$
In potassium nitrate solution (1 M KNO$_3$, pH \sim 7) the forward reaction rate for N-doped CNFs was approximately $5 \cdot 10^{-6}$ cm$^{-1}$s$^{-1}$ and $3 \cdot 10^{-8}$ cm$^{-1}$s$^{-1}$ for non-doped CNFs. In potassium hydroxide solution (1 M KOH, pH \sim 14), the forward reaction rate was $\sim 1.8 \cdot 10^{-5}$ cm$^{-1}$s$^{-1}$ and $1 \cdot 10^{-7}$ cm$^{-1}$s$^{-1}$ for N-doped and non-doped CNFs respectively. Thus, in both neutral and alkaline solutions, N-doped CNFs exhibited a 100-fold increase in H$_2$O$_2$ decomposition [393], with values similar to Pt black [396].

Nitrogen doping has repeatedly been reported to increase the basic nature [37, 397] and catalytic activity [398-401] of the graphitic carbon, which is attributed to the presence of nitrogen [402]. Nitrogen-doping in a basal plane of carbon may be more favorable than that in edge sites because the number of available doping sites is greater in the basal plane than in the edge [403]. Geng and coworkers [101] studied the relationship between structure and activity in nitrogen-doped CNTs. ORR activity in acid and alkaline
solutions increased as the nitrogen content on the surface was increasing (Fig. 21). Similar results were obtained by density functional calculations [403] demonstrating that oxygen adsorption becomes more energetically favorable as the number of nitrogen around C=C bond increases.

![Figure 22. Polarization curves of oxygen reduction on nitrogen-doped CNTs with different nitrogen content (Experimental conditions: 0.1 M KOH, 5 mVs⁻¹ scan rate, 1600 rpm rotation speed, 160 μgcm⁻² catalyst loading - Reprinted from [101] with permission from Elsevier).](image)

The basicity of carbon surface derives from the π electron delocalization in graphite carbon layers and the antioxidant character of carbon forming oxygen containing groups [393]. Delocalized π electrons are capable of nucleophilic attack giving Lewis basicity to the carbon [393, 404].
4.2 Nitrogen-doped Carbon Hybrids with Non-Precious Metals

Non-noble metals supported on nitrogen-doped carbon supports are synthesized by pyrolysis of nitrogen [405-411] and transition metal (such as Fe, Co) [408, 409, 412-427] precursors at high temperatures (~ 600-900°C). Nitrogen precursors are ammonia (NH₃) [405, 406, 410, 411] or acetonitrile (CH₃CN) [407-409, 425] while transition metal precursors include metal salts [408, 409, 424], metal [409, 412], Prussian metal [413, 415] and N₄ macrocyclic complexes [414, 416-423]. Dodelet and coworkers [428] determined the structural parameters of carbon black that are important to maximize its catalytic activity during pyrolysis in NH₃. These parameters are the average particle diameter of carbon black, the amount of disordered phase and the mean size of graphene layers that constitute the ordered regions in carbon black. The microporosity and nitrogen content on the surface of carbon black is proportional to the amount of available disordered phase in the pristine carbon black [428]. When the mean size of graphene layers in carbon black is large, ammonia can react for an extended amount of time with the disordered carbon phase, resulting to a thick porous material. Consequently, the synthesized porous material leads to an increased catalytic activity since the catalytic sites are hosted in the micropores of carbon black [428].

For Fe-based nitrogen doped catalysts, the catalytic activity is directly related to iron content; the number of catalytic sites is increasing as Fe content is increasing until all phenanthroline nitrogens are coordinated with iron [429].
Two different catalytic sites exist at all pyrolysis temperatures in Fe-based catalysts made with Fe salt or porphyrin, namely FeN$_4$/C and FeN$_2$/C [430, 431]. FeN$_2$/C is an iron ion coordinated to two pyridinic nitrogen atoms while FeN$_4$/C is coordinated to four pyrrole nitrogen atoms. Rotating disk electrode (RDE) measurements revealed that FeN$_2$/C has higher activity and selectivity than FeN$_4$/C due to the better electrical contact of FeN$_2$/C catalytic site with the graphene plane [430]. However, further investigation is needed to fully comprehend the reasons for the higher activity of FeN$_2$/C catalytic sites.

Zelenay and coworkers [432] used cyanamide as the nitrogen precursor to synthesize transition metal-nitrogen-doped carbon ORR catalysts. Cyanamide forms graphitic C$_3$N$_4$ under pyrolysis with high nitrogen content resulting in high catalytic activity. The best performing catalyst was obtained after heat treatment at 1050$^\circ$C yielding an open circuit voltage of 1 V (vs. SHE) and ~ 105 mAcm$^{-2}$ current density at 0.8 V vs. SHE (Fig. 22). Cyanamide reduces sulfur evolution from the iron source (FeSO$_4$) during heat treatment indicating that an interaction between cyanamide and sulfate-derived species exists and stabilizes the sulfur through the formation of C-S bonds. However, this mechanism is still being investigated [432].
Iron and cobalt nitrogen-doped catalysts \((\text{TM}_x\text{C}_{1-x-y}\text{N}_y; \text{TM} = \text{Fe}, \text{Co}; 0<x<0.09; 0<y<0.5)\) were also prepared by sputter deposition \([433, 434]\). Grazing-incidence X-ray diffraction and scanning electron microscopy (SEM) were used to observe the structural changes as a function of temperature \([434]\). At temperatures above 700°C, the catalyst transformed to a heterogeneous mixture of partially graphitized nitrogen-containing carbon and \(\text{Fe}_3\text{C}\) or \(\beta\)-Co accompanied by a rapid decrease in nitrogen content \([434]\). \(\text{Fe-N-C}\) catalyst exhibited the highest activity at 800°C since the thermal annealing at this temperature causes graphitization and retains sufficient amount of nitrogen to form active sites \([434]\).

However, the instability of transition metal nitrogen-doped carbon catalysts in the highly acidic environment of PEFCs still remains a challenge. The origin of instability in acidic
medium is due to the formation of H$_2$O$_2$ (product of the incomplete reduction of oxygen) [435]. Lefevre and Dodelet [435] submitted iron-nitrogen doped carbon catalysts to peroxide treatment to quantify the effect of peroxide on their catalytic activity. Even 5 vol% of peroxide is detrimental to the activity due to the loss of iron content from the catalytic sites (Fig. 23) [435]. A partial solution to this instability issue is the heat treatment of catalysts at high temperatures. Even though stability is improved, the catalytic activity is decreased due to the loss on nitrogen content [435]. Thus, further research is needed to develop stable transition metal-nitrogen doped carbon catalysts in the acidic environment of PEFC.

Figure 24. Effect of H$_2$SO$_4$ (stars) and of H$_2$SO$_4$ + 5 vol% H$_2$O$_2$ (open squares) on the initial catalytic activity (dark squares) for type FeAc (Iron acetate) and IFeTMPP (Fe tetramethoxyphenylporphyrin) catalysts (Reprinted from [435] with permission from Elsevier).
4.3 Polymer Composites with Nitrogen-doped Carbon Hybrids

Research is also focused on non-precious metal catalysts synthesized with conjugated heterocyclic conducting polymers such as Ppy, Pani, poly-(3-methylthiophene (P3MT)) and poly-(ethyleneimine) [371, 436-441].

The ORR activity and stability of carbon-supported materials with or without cobalt based on different heterocyclic polymers were investigated [437]. Energy dispersive atomic X-ray spectrometry (EDAX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA) studies demonstrated that the addition of cobalt modifies the chemical structure of all carbon-supported materials studied by the introduction of Co-N (Ppy-C-Co and Pani-C-Co) and Co-S (P3MT-C-Co) bonds [437]. The addition of cobalt results in improved electrocatalytic activity of C-P3MT and C-Pani catalysts even though their thermal stability is slightly reduced at lower temperatures due to the degradation of cobalt oxides (Fig. 24a) [437]. The potential at which ORR occurs was determined to be the highest for Ppy-C-Co (-0.2 to 1 V vs. normal hydrogen electrode (NHE)), followed by Ppy-C, and P3MT-C-Co. Potentiostatic measurements were conducted for 48 hrs to determine the stability of these materials at the maximum potential in the ORR peak (obtained from cyclic voltammogram). Ppy-C-Co and P3MT-C-Co were stable (after a small current decrease during the first 2 hrs) while Ppy-C exhibited a continuous current decrease throughout the experiment (Fig. 24b) [437]. Based on these results, it was reported that Ppy-C-Co catalyst was the most suitable
material for use in PEFCs, even though the potential range in which ORR occurs needs to be further improved.

Figure 25. a) TGA curves of carbon-supported materials with or without cobalt obtained in nitrogen atmosphere; b) Chronoamperometry results for Results from chronoamperometry for Ppy-C-Co, P3MT-C-Co and Ppy-C in 0.5 M H₂SO₄ under oxygen (Reprinted from [437] with permission from Elsevier).

The activity of Ppy-C-Co catalyst was thoroughly examined by the synthesis of pyrolyzed and un-pyrolyzed Ppy-C-Co with oxidative polymerization (80°C). Pyrolyzed Ppy-C-Co catalyst demonstrated significantly improved ORR activity over the un-pyrolyzed catalyst indicating that the heat treatment enhanced the catalytic activity. X-ray photoelectron spectroscopy (XPS) revealed that new nitrogen peaks corresponding to pyrrolic and graphitic nitrogen were observed. Both these groups are ORR active increasing the catalytic activity and changing the ORR mechanism from two- (H₂O₂ production) to four-electron reduction (H₂O production) process compared to un-pyrolyzed catalyst [439]. The Koutecky-Levich plot for un-pyrolyzed Ppy-C-Co showed a slope close to the theoretical value for a two-electron transfer reaction, whereas
pyrolyzed Ppy-C-Co catalysts had slope similar to the theoretical four-electron transfer reaction. Based on these data, the calculated ORR electron number (n) was 2.4 for the un-pyrolyzed Ppy-C-Co and 3.2 for the pyrolyzed (Fig. 25).

Figure 26. Koutecky-Levich plots for the ORR of un-pyrolyzed and pyrolyzed Ppy-C-Co catalysts; experimental conditions: 0.3 V (vs. RHE) in 0.5 M H₂SO₄ under saturated O₂ and 0.122 mgcm⁻² Ppy-C-Co loading. The current densities were normalized to the geometric area (Reprinted from [439] with permission from Elsevier).

The effect of the weight and molar ratio of Ppy:Co on the ORR activity of these catalysts was recently investigated [442]. Ppy:Co molar ratio of 4 increased the ORR activity as it favors the formation of complexes in which Co is coordinated to 3 or 4 nitrogen atoms. Calcination of these complexes led to the generation of CoNₓ sites characterized by high ORR activity since the coordination on Co in them favors the adsorption of oxygen on them. The ORR activity of Ppy-Co-C (molar ratio 4 and weight ratio 2) was adequate, being 200 mV lower than pristine Pt-C, and produced less H₂O₂ than Pt [442].
The electrocatalytic activity of composite carbon supported materials based on heterocyclic polymers and nickel (Pani-C-Ni, Ppy-C-Ni, and P3MT-C-Ni) was also studied [438]. FTIR revealed that the modification with nickel altered the polymer bonds creating Ni-AN (for Pani and Ppy-based catalysts) and Ni-AS bonds (for P3MT-based catalysts), while TGA showed that the incorporation of nickel improved the thermal stability of the catalysts at high temperatures (above 400°C). The Tafel slopes were similar for all catalysts tested (~0.11-0.2); however, Ppy-C-Ni had the highest exchange current density (~4·10^{-5} mAc㎡^{-2} followed by P3MT-C-Ni and Ppy-C (~3.5·10^{-5} and 2.5·10^{-5} mAc㎡^{-2} respectively). Based on these results, it was concluded that Ppy-C-Ni was the most suitable catalyst for ORR in acidic medium [438].

Popov and coworkers [443] synthesized N-doped ordered porous carbon (CNₙ) via a nanocasting process using polyacrylonitrile (Pan) as the carbon and nitrogen precursor and mesoporous silica as hard template [443]. The non-precious metal ORR catalysts were prepared by pyrolyzing CNₙ at 1000°C in argon after iron acetate was adsorbed onto it, followed by post-treatments. RDE measurements demonstrated a ~ 0.88 V (vs. NHE) onset potential for ORR in 0.5 M H₂SO₄, while a current density of 0.6 Acm⁻² at 0.5 V was obtained in a H₂/O₂ PEFC using 2 mgcm⁻² catalyst loading [443].

To sum up, nitrogen doping of nanostructured carbon is a promising strategy to obtain low cost PEFC catalysts with good cell performance. Nitrogen-doped carbon with or without transition metal catalysts exhibit enhanced catalytic activity and durability toward ORR. Nitrogen is the indispensable element in many non-Pt metal catalysts (Fe,
Co, etc.) for potential application in PEFCs. Research is also focused on the development of non-precious metal catalysts synthesized with conjugated heterocyclic conducting polymers (such as polypyrrole). Initial results show adequate ORR activity and fuel-cell performance, but further research is needed to increase the stability in acidic medium and the potential range in which ORR occurs.

5. Carbon Hybrids as ORR Electrocatalysts in Alkaline Fuel Cells

Pt and Pt alloys are undoubtedly the most widely used fuel cell ORR catalysts for acidic conditions of phosphoric acid or proton exchange membrane fuel cells [248, 325, 444-473]. Alkaline fuel cells (AFCs) allow the use of non-precious metal catalysts as cathode electrodes due to the faster ORR kinetics and better stability of these materials under basic conditions [474]. This unique characteristic transforms AFCs to a promising candidate for portable power sources and electric vehicles applications [475-479]. However, further research is needed in order to improve the low activity and poor durability of AFCs electrocatalysts, before the commercialization of this technology [479].

5.1 Nitrogen-doped Carbon

Nitrogen doped carbon materials were among the first that were studied as electrocatalysts for AFCs [296, 374, 480-485]. Nitrogen doping of carbon leads to similar
ORR kinetics with commercial Pt/C electrocatalyst, and higher kinetics than commercial Ag/C catalysts [393, 483, 486].

Nitrogen doped carbon nanotubes synthesized by catalytic growth and post treatment with ammonia (NH$_3$) and aniline were tested as ORR electrocatalysts in alkaline solution [480]. Nitrogen CNT-NH$_3$ demonstrated the highest ORR activity in alkaline solution (0.1 M KOH) [480]. However, after the alkaline treatment of the samples (10 M KOH for 5 h at 80$^\circ$C), nitrogen doped CNTs (by catalytic growth) exhibited enhanced catalytic activity in contrast to the decreased performances of nitrogen doped CNT-NH$_3$ and -aniline catalysts. This improved activity was attributed to the formation of oxygen groups by alkaline treatment and their interaction with existing nitrogen groups [480]. XPS analysis demonstrated that the treatment in 10 M KOH led to a slight decrease of the N/C ratio for all three nitrogen doped CNT samples and changes to the concentration of quaternary, pyridinic and pyrrolic nitrogen [480]. In the case of nitrogen doped CNTs (by catalytic growth), the concentrations of quaternary and pyridinic nitrogen increased, whereas pyrrolic nitrogen decreased. Nitrogen doped CNTs -NH$_3$ and -aniline samples exhibited the opposite trend. These results showed that high concentrations of pyridinic and quaternary-nitrogen are beneficial for the ORR catalysis. On the contrary, pyrrolic type nitrogen is also considered to be among the active sites of N-doped nanocarbons for ORR [487, 488] but it has negative effects on the ORR activity in alkaline media [489, 490].
This result is in accordance with previous reports in the literature indicating that quaternary [372, 491-496] and pyridinic [372, 492, 497-504] nitrogen are the most active forms for ORR catalysis in alkaline media. Theoretical studies support the hypothesis that the presence of quaternary-type nitrogen favors O$_2$ adsorption at carbon sites on the zigzag edges located adjacent to quaternary-type nitrogen [505]. The incorporation of electron-accepting nitrogen atoms creates a relatively high positive charge density on adjacent carbon atoms; nitrogen becomes more electronegative and creates a net positive charge on the adjacent carbon atoms [506]. As a result, the adsorption of O$_2$ on nitrogen doped CNTs becomes easier leading to an improved electrocatalytic activity of these materials towards ORR in alkaline media (higher than that of Pt/C catalyst) [506].

Apart from the contribution of quaternary and pyridinic type nitrogen, there are reports in the literature attributing the ORR activity in alkaline media to the number of defects and edge sites of carbon upon nitrogen doping [373, 507, 508], which are also considered as active sites for ORR [366].

Hence, despite the fact that the physicochemical origin of the ORR activity of N-doped nanocarbons is still unclear, nitrogen-doped CNTs are a promising candidate as cathode catalysts in AFCs. However, extensive in-situ fuel-cell testing of these materials is required to obtain more information about their stability and activity during fuel-cell operation.
5.2 Nitrogen-doped multi-layer Graphene / reduced Graphene Oxide

Multi-layer graphene and reduced graphene oxide are potential candidates as cathode material for AFCs due to the large surface area and good mechanical properties of the material [296, 299].

As in the case of nitrogen doped CNTs, the ORR activity of nitrogen doped multi-layer graphene / reduced graphene oxide also depends on nitrogen functionality (pyridinic, quaternary and pyrrolic nitrogen and pyridine-nitrogen-oxide) [481, 509-512]. However, there is a debate on which of the four nitrogen functionalities is the most influential factor on ORR activity in alkaline media. Nitrogen (~ 8 wt %) doped graphene oxide with high percentage of quaternary nitrogen (~ 24%) exhibited high ORR activity whereas the other three functionalities reported to have small impact [513]. Nitrogen doped reduced graphene oxide was prepared by graphene oxide (produced by Hummers method [352]) and urea (N precursor; 46 wt% N2) [513]. Graphene oxide was dispersed in water and urea was then added in the solution under continuous stirring until complete dissolution of urea. The solution was dried at 55°C and then pyrolyzed at 800°C in Ar atmosphere; during pyrolysis, graphene oxide was thermally reduced and N atoms were incorporated into the graphitic structure producing nitrogen doped reduced graphene oxide [513].

On the other hand, there are reports in the literature stating that pyridinic N and the small pores of the catalyst are responsible for ORR electrocatalysis [514]. XPS and Raman measurements of the nitrogen-doped reduced graphene oxide indicated that the pyridinic
nitrogen introduced disordered edge planes into the graphene structure [485]. BET analysis demonstrated that the surface area of reduced graphene oxide was increased due to the exposure of disordered edge planes [485]. These observations led to the assumption that the defects introduced by pyridinic nitrogen act as active sites for the ORR [485].

RRDE measurements showed that nitrogen doped multi-layer graphene (2-8 layers; 0.3-0.4 nm interlayer distance and 0.9-1.1 nm layer thickness) exhibited high ORR activity in alkaline media (0.1 M KOH) [296]. The steady-state catalytic current density was approximately three times higher than that of Pt/C over a wide potential range (Fig. 26). The transferred electron number per oxygen molecule was 3.6-4 between -0.4 and -0.8 V (vs. SHE), showing that nitrogen doped multi-layer graphene exhibited a four electron pathway to ORR [296].

Chemical vapor deposition was used for the facile synthesis of multi-layer graphene. A thin layer (~ 300 nm) of nickel was deposited on a silica substrate by sputter coating and the sample was heated up to 1000°C under inert atmosphere (Argon) [296]. A nitrogen-containing reaction gas mixture (NH₃:CH₄:H₂:Ar = 10:50:65:200 cm³ min⁻¹) was introduced into the furnace for 5 min followed by purging with NH₃ and Ar for another 5 min [296]. The resulting multilayer-graphene could be etched off the substrate by dissolution of the residual Ni catalyst layer in HCl solution [296].
Figure 27. Rotating ring disk electrode voltammograms for multi-layer graphene (red), Pt/C (green), and nitrogen doped multi-layer graphene (blue). Experimental conditions: 0.1 M KOH, 0.01 Vs⁻¹ scan rate, 1000 rpm rotation rate, Mass (multi-layer graphene) = Mass (Pt/C) = Mass (nitrogen doped multi-layer graphene) = 7.5µg (Reprinted from [296] - Copyright © 2010 American Chemical Society).

5.3 Carbon with Non-Precious Metals

Ag and Ag-alloys are used as catalysts in AFCs due to their low cost and similar ORR activities to Pt and Pt alloys [515, 516]. However, the performance of Ag based catalysts is affected by the agglomeration of the Ag nanoparticles and the electrochemical corrosion of the catalyst supports [517]. The incorporation of Ag catalysts into CNTs is a very promising method to increase the stability and ORR activity of these catalysts in alkaline environment [516]. It was reported that an increase of Ag content (from 5 to 9 wt%) and CNT surface area results to higher amount of active sites per geometric surface area of the electrode and thus, faster ORR kinetics [516].
The ORR activity of Ag/C catalysts can be predicted by the intensity of the anodic peak (Fig. 27; A_1 peak at 0.23 V vs. Hg/HgO in 0.1 M NaOH) which is correlated to silver dissolution and formation of a surface monolayer of Ag$_2$O [518, 519]. As the Ag loading increases (10 to 60 wt%), peak intensity increases linearly and ORR onset potential shifts positively 60 mV [519].

![Cyclic voltammograms of Ag/C catalysts with different metal loadings](image)

Figure 28. Cyclic voltammograms of Ag/C catalysts with different metal loadings; experimental conditions: Argon atmosphere, 0.1 M NaOH solution, and 20mVs$^{-1}$ scan rate. Inset: curves of A_1 anodic peak intensities with metal loading (Reprinted from [519] - Copyright© 2010 American Chemical Society).

Recently, Ag nanoparticles were deposited directly on MWCNTs by sputter deposition [520] and in-situ growth [517]. Ag/MWCNTs catalyst exhibited high ORR activity in alkaline media and the reduction process proceeded via a four-electron pathway [517, 520]. The high ORR activity of Ag/MWCNTs was attributed to the ability of dispersed Ag nanoparticles on the surface of MWCNTs to further reduce HO$_2^-$ formed at the surface of NTs [517, 520]. Even though the ORR activity of Ag/MWCNTs is still lower
than pristine PT/C (20 wt %) [517], Ag/MWCNTs are promising ORR catalysts for AFCs.

Moreover, Pd and Pd alloys are also used as non-Pt catalysts since Pd has similar properties to Pt [521]. Pd has slightly lower ORR activity than Pt, and by addition of a suitable metal, such as Co or Fe, the ORR activity of Pd can surpass that of Pt [522, 523]. The incorporation of transition metals (Co, Fe, Cr, and Ni) to Pd enhances the ORR activity due to modification of electron configuration and alteration of surface species and composition [521]. Pd has fully occupied d-orbitals while the alloyed transition metal has low occupancy of d orbitals [524]; the d-orbital coupling effect between those two metals decrease the required Gibbs free energy of the electron transfer steps in ORR, leading to an increase in ORR kinetics [524]. Among the non-Pt alloys tested, Pd-Co alloy exhibited high ORR activity in alkaline media along with Au-Co and Ag-Co alloys [525]. Cobalt is stable in alkaline media even though it dissolves from the metal alloy as cobalt oxide in acidic media [526]. A recent study demonstrated that PdCo(3:1)/C based MEAs exhibited the highest alkaline fuel-cell performance (~ 85 mWcm⁻²) compared to PdCo(2:1)/C and PdCo(1:1)/C based MEAs (75 and 26 mWcm⁻² respectively) when tested at 30°C [521].

Iron phthalocyanines (FePc), cobalt phthalocyanines (CoPc) and other similar M-N₄-macrocycles supported on different carbon nanomaterials have also attracted much attention towards ORR in alkaline medium [486, 527-534].
FePc and CoPc have the ability to promote the 4e− oxygen reduction to water without the formation of peroxide intermediates [528-530]. RRDE studies (0.1 M KOH) demonstrated that the current density of CoPc was consistently higher than FePc due to the different onset potential of ORR. The onset potential for CoPc/MWCNT starts at -0.1 V (vs. SCE) and shifts towards the positive direction whereas the FePc/MWCNT onset potential begins at -0.15 V (vs. SCE) [531]. Fuel cell performance (H\textsubscript{2}/O\textsubscript{2} as fuel, 45°C) of CoPc/MWCNT based MEAs was similar (~ 100 mWcm-2 power density) to commercial E-TEK Pt/C MEAs [531], whereas FePc/MWCNTs based MEAs exhibited poor fuel-cell performance (~ 60mWcm-2) under the same conditions [531]. However, further fuel-cell performance testing at higher temperatures could not be conducted due to water balance issues in the fuel-cell above 50°C [531].

Manganese oxide based catalysts for the ORR in alkaline media have also attracted much attention in recent years [535-542] due to the low cost of the material. The catalytic activity of MnO\textsubscript{2} depends on the crystallographic structures, namely α-, β- and γ-MnO\textsubscript{2} [543]. ORR catalytic activity order in alkaline media is α- > β- > γ-MnO\textsubscript{2} and a 4 electron ORR pathway is achieved when α-MnO\textsubscript{2} nanostructures are used [536, 544, 545]. However MnO\textsubscript{2} has low electrical conductivity and it is always incorporated into a conducting carbon material such as CNTs to overcome this issue [543, 546-550].

Similar to manganese dioxide, MnOOH also shows catalytic activity toward ORR in alkaline media [544]. A recent study demonstrated that an increase of the MnOOH catalyst loading resulted to an enhancement of the catalytic activity of MnOOH/C even
though still lower than pristine Pt/C (Fig. 28). Hence, optimization of the MnOOH content in the carbon hybrid catalyst can lead to enhanced electrocatalytic properties [544].

![Figure 29. RRDE results of MnOOH/C catalysts with varying MnOOH content.](image)

Experimental conditions: 0.1 M KOH, 10 mVs\(^{-1}\) scan rate, 1600 rpm rotating speed

(Reprinted from [544] with permission from Elsevier).

In summary, AFCs offer facile ORR kinetics in alkaline media allowing a wide range of low cost, non-platinum electrocatalysts to be used in the cathode, namely, nitrogen doped carbonaceous materials, Ag and Pd nanoparticles, transition metal oxides and M-N\(_4\)-macrocycles supported on carbon. Among these materials, nitrogen doped CNTs and nitrogen doped multi-layer graphene / reduced graphene oxide exhibit the highest ORR activity in alkaline media, even though the activity is still lower when compared to pristine Pt/C. However, it remains unclear whether the nitrogen functionality (pyridinic, quaternary and pyrrolic nitrogen) or the number of defects on carbon surface created by
nitrogen doping is the main contributor to the enhanced ORR activity of these materials. Further research is needed to clarify the main source of ORR activity of nitrogen doped carbonaceous materials in alkaline media and to improve the electrocatalytic activity and in-situ stability under various fuel-cell operating conditions and potential cycling profiles.

6. Conclusions and Future Outlook

Carbon is widely used in the catalytic processes of the chemical industry due to its unique characteristics, such as chemical inertness, high surface area and porosity, good mechanical properties and low cost. It is used for the production of chlorine and aluminum, in metal refining, in batteries and biosensors as well as for the electrolytic production of hydrogen peroxide and photo-electrochemical water splitting.

Carbon is a vital component of PEFCs as well and it can serve as structural component (gas diffusion layer), catalyst support and ORR electrocatalyst. However, carbon is oxidized at high potentials leading to fuel-cell performance losses and hence new carbon support materials such as carbon nanotubes and nanofibers as well as mesoporous carbon, multi-layer graphene (undoped and doped with metal nanoparticles) and reduced graphene oxide (undoped and doped with metal oxides) are being investigated. They offer high crystallinity, surface area, increased fuel cell performance and stability. However, further PEFC testing is required with respect to their ORR activity, long-term stability (continuous cycling and accelerated degradation tests) and conductivity.
Pt is currently used as the electrocatalyst for oxygen reduction in PEFCs, but its high cost and limited resources led to an extensive research for alternate, non-noble metal electrocatalysts. Among them, nitrogen doping of nanostructured carbon (with or without transition metals) demonstrated enhanced catalytic activity and durability. Nitrogen-doped non-precious metal electrocatalysts with conducting polymers (polypyrrole, polyaniline) also exhibited adequate ORR activity and fuel cell performance. However, further research is needed toward their stability in highly acidic/alkaline medium and broadening of potential range in which oxygen reduction occurs.

7. Commentary

The current review presented in detail the various forms of carbon used for electrochemical energy conversion. Carbon black has been used extensively due to low cost and high availability. Insufficient electrochemical stability and low catalyst utilization with carbon black resulted in the development of new carbon derivatives. However, which of these carbon forms are viable (based on the properties and cost of the material) and are strong contenders for large scale production?

Ordered mesoporous carbon, carbon nanotubes, multi-layer graphene and reduced graphene oxide are the most promising candidates for commercialization. As catalyst support, the large surface area of OMCs results in high dispersion of catalyst while the uniform mesopores of the material lead to high rates of mass transport and enhanced catalytic activity. As fuel cell catalysts though, OMCs exhibit low durability and activity. This issue can be resolved by nitrogen doping resulting in the formation of graphitic...
framework with nitrogen content and thus high activity and stability under fuel cell conditions. Further research is needed to evaluate the electrochemical properties of N-OMCs under long term fuel-cell operation.

Moreover, the utilization of CNTs, multi-layer graphene (undoped and doped with metal nanoparticles) and reduced graphene oxide (doped with metal oxides) as catalyst supports offers high rates of mass / charge transport as well as high conductivity and stability. The two dimensional nature of these materials allows both the edge and basal planes to interact with the catalysts increasing the catalytic activity. As catalysts, nitrogen doped CNTs as well as nitrogen doped multi-layer graphene and reduced graphene oxide exhibit the highest ORR activity in alkaline media, even though the activity is still lower when compared to pristine Pt/C. Further research is needed to improve the electrocatalytic activity and in-situ stability under various fuel-cell operating conditions and potential cycling profiles.

Hence, nitrogen doped CNTs, OMCs, multi-layer graphene and reduced graphene oxide are the most suitable applicants (supports / catalysts) for fuel cell commercialization, even though there are still a few obstacles to overcome, namely long-term stability and development of cost-effective synthesis techniques for large scale production.
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>AFC</td>
<td>Alkaline fuel cell</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett and Teller</td>
</tr>
<tr>
<td>CIC</td>
<td>Carbon in column</td>
</tr>
<tr>
<td>CIL</td>
<td>Carbon in leach</td>
</tr>
<tr>
<td>CIP</td>
<td>Carbon in pulp</td>
</tr>
<tr>
<td>CNF</td>
<td>Carbon fiber</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon nanotube</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapor deposition</td>
</tr>
<tr>
<td>DOMC</td>
<td>Disordered mesoporous carbon</td>
</tr>
<tr>
<td>ECA</td>
<td>Electrochemically active surface area</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy dispersive atomic X-ray spectrometry</td>
</tr>
<tr>
<td>EQCM</td>
<td>Electrochemical quartz crystal microbalance</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GDL</td>
<td>Gas diffusion layer</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MC</td>
<td>Mesoporous carbon</td>
</tr>
<tr>
<td>MEA</td>
<td>Membrane electrode assembly</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multi-walled carbon nanotube</td>
</tr>
<tr>
<td>OMC</td>
<td>Ordered mesoporous carbon</td>
</tr>
<tr>
<td>ORR</td>
<td>Oxygen reduction reaction</td>
</tr>
<tr>
<td>NHE</td>
<td>Normal hydrogen electrode (E = 0 V)</td>
</tr>
<tr>
<td>P3MT</td>
<td>Poly (3-methylthiophene)</td>
</tr>
<tr>
<td>Pan</td>
<td>Polyaclonitrile</td>
</tr>
<tr>
<td>Pani</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PEFC</td>
<td>Polymer electrolyte fuel cell</td>
</tr>
<tr>
<td>PEM</td>
<td>Proton exchange membrane</td>
</tr>
<tr>
<td>Ppy</td>
<td>Polypyrrrole</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>PtG</td>
<td>Platinum-graphene</td>
</tr>
<tr>
<td>PtNG</td>
<td>Pt-nitrogen doped graphene</td>
</tr>
<tr>
<td>RDE</td>
<td>Rotating disk electrode</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>RHE</td>
<td>Reversible hydrogen electrode (E = 0 V)</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated calomel electrode (E = +0.24 V vs.NHE)</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SHE</td>
<td>Standard hydrogen electrode (E = 0 V)</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Single-walled carbon nanotube</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>Vol</td>
<td>Volume percent (%)</td>
</tr>
<tr>
<td>wt</td>
<td>Weight percent (%)</td>
</tr>
<tr>
<td>WMC</td>
<td>Wormhole mesoporous carbon</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
References

471. Koh, S.K., Shirlaine); Toney, MF (Toney, Michael F.); Strasser, P (Strasser, Peter), Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). ELECTROCHIMICA ACTA 2007. 52: p. 2765-2774.

